These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30358031)

  • 1. Bacteriorhodopsin-Inspired Light-Driven Artificial Molecule Motors for Transmembrane Mass Transportation.
    Xie G; Li P; Zhao Z; Kong XY; Zhang Z; Xiao K; Wang H; Wen L; Jiang L
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16708-16712. PubMed ID: 30358031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines.
    Li P; Xie G; Liu P; Kong XY; Song Y; Wen L; Jiang L
    J Am Chem Soc; 2018 Nov; 140(47):16048-16052. PubMed ID: 30372056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels.
    Lu J; Jiang Y; Yu P; Jiang W; Mao L
    Chem Asian J; 2022 May; 17(10):e202200158. PubMed ID: 35324076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the mechanism of proton pumping by bacteriorhodopsin.
    Hirai T; Subramaniam S
    FEBS Lett; 2003 Jun; 545(1):2-8. PubMed ID: 12788485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport.
    Ludlam GJ; Rothschild KJ
    FEBS Lett; 1997 May; 407(3):285-8. PubMed ID: 9175869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization.
    Liu T; Bao C; Wang H; Lin Y; Jia H; Zhu L
    Chem Commun (Camb); 2013 Nov; 49(87):10311-3. PubMed ID: 24064555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton transfers in the bacteriorhodopsin photocycle.
    Lanyi JK
    Biochim Biophys Acta; 2006 Aug; 1757(8):1012-8. PubMed ID: 16376293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress toward an explicit mechanistic model for the light-driven pump, bacteriorhodopsin.
    Lanyi JK
    FEBS Lett; 1999 Dec; 464(3):103-7. PubMed ID: 10618486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriorhodopsin.
    Lanyi JK
    Annu Rev Physiol; 2004; 66():665-88. PubMed ID: 14977418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of bacteriorhodopsin into a chloride ion pump.
    Sasaki J; Brown LS; Chon YS; Kandori H; Maeda A; Needleman R; Lanyi JK
    Science; 1995 Jul; 269(5220):73-5. PubMed ID: 7604281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-driven proton or chloride pumping by halorhodopsin.
    Bamberg E; Tittor J; Oesterhelt D
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):639-43. PubMed ID: 8380643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering an inward proton transport from a bacterial sensor rhodopsin.
    Kawanabe A; Furutani Y; Jung KH; Kandori H
    J Am Chem Soc; 2009 Nov; 131(45):16439-44. PubMed ID: 19848403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From symmetric to asymmetric design of bio-inspired smart single nanochannels.
    Zhang H; Tian Y; Jiang L
    Chem Commun (Camb); 2013 Oct; 49(86):10048-63. PubMed ID: 24048227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory Reaction Induced Periodic C-Quadruplex DNA Gating of Artificial Ion Channels.
    Wang J; Fang R; Hou J; Zhang H; Tian Y; Wang H; Jiang L
    ACS Nano; 2017 Mar; 11(3):3022-3029. PubMed ID: 28226213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Synthesis of Nonequilibrium Systems.
    Cheng C; McGonigal PR; Stoddart JF; Astumian RD
    ACS Nano; 2015 Sep; 9(9):8672-88. PubMed ID: 26222543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A light-regulated host-guest-based nanochannel system inspired by channelrhodopsins protein.
    Sun Y; Ma J; Zhang F; Zhu F; Mei Y; Liu L; Tian D; Li H
    Nat Commun; 2017 Aug; 8(1):260. PubMed ID: 28811463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
    Sass HJ; Büldt G; Gessenich R; Hehn D; Neff D; Schlesinger R; Berendzen J; Ormos P
    Nature; 2000 Aug; 406(6796):649-53. PubMed ID: 10949308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the bacteriorhodopsin photocycle without the use of light: clues to proton transfer coupled reactions.
    Lanyi JK
    J Mol Microbiol Biotechnol; 2007; 12(3-4):210-7. PubMed ID: 17587869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins.
    Spudich JL
    Mol Microbiol; 1998 Jun; 28(6):1051-8. PubMed ID: 9680197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channelrhodopsin-1: a light-gated proton channel in green algae.
    Nagel G; Ollig D; Fuhrmann M; Kateriya S; Musti AM; Bamberg E; Hegemann P
    Science; 2002 Jun; 296(5577):2395-8. PubMed ID: 12089443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.