These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 30358165)
21. Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Zaid DS; Cai S; Hu C; Li Z; Li Y Microbiol Spectr; 2022 Feb; 10(1):e0216921. PubMed ID: 35107331 [TBL] [Abstract][Full Text] [Related]
22. Identification and Characterization of Lipopeptides from Bacillus subtilis B1 Against Sapstain Fungus of Rubberwood Through MALDI-TOF-MS and RT-PCR. Sajitha KL; Dev SA; Maria Florence EJ Curr Microbiol; 2016 Jul; 73(1):46-53. PubMed ID: 27004481 [TBL] [Abstract][Full Text] [Related]
23. Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide. Jakinala P; Lingampally N; Kyama A; Hameeda B Ecotoxicol Environ Saf; 2019 Oct; 182():109372. PubMed ID: 31255866 [TBL] [Abstract][Full Text] [Related]
24. Complete Genome of Bacillus velezensis CMT-6 and Comparative Genome Analysis Reveals Lipopeptide Diversity. Deng Q; Wang R; Sun D; Sun L; Wang Y; Pu Y; Fang Z; Xu D; Liu Y; Ye R; Yin S; Xie S; Gooneratne R Biochem Genet; 2020 Feb; 58(1):1-15. PubMed ID: 31098827 [TBL] [Abstract][Full Text] [Related]
25. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum. Chen M; Deng Y; Zheng M; Xiao R; Wang X; Liu B; He J; Wang J J Appl Microbiol; 2024 Mar; 135(3):. PubMed ID: 38389225 [TBL] [Abstract][Full Text] [Related]
26. Isolation and characterization of leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. Snook ME; Mitchell T; Hinton DM; Bacon CW J Agric Food Chem; 2009 May; 57(10):4287-92. PubMed ID: 19371139 [TBL] [Abstract][Full Text] [Related]
29. Food safety and biological control; genomic insights and antimicrobial potential of Bacillus velezensis FB2 against agricultural fungal pathogens. Hammad M; Ali H; Hassan N; Tawab A; Salman M; Jawad I; de Jong A; Moreno CM; Kuipers OP; Feroz Y; Rashid MH PLoS One; 2023; 18(11):e0291975. PubMed ID: 37963161 [TBL] [Abstract][Full Text] [Related]
30. Microscopic and Transcriptomic Analyses to Elucidate Antifungal Mechanisms of Jin J; Yang RD; Cao H; Song GN; Cui F; Zhou S; Yuan J; Qi H; Wang JD; Chen J J Agric Food Chem; 2024 Aug; 72(31):17405-17416. PubMed ID: 39042819 [No Abstract] [Full Text] [Related]
31. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Zhao P; Quan C; Wang Y; Wang J; Fan S J Basic Microbiol; 2014 May; 54(5):448-56. PubMed ID: 23553741 [TBL] [Abstract][Full Text] [Related]
32. Multi-Omics Techniques for Analysis Antifungal Mechanisms of Lipopeptides Produced by Zhang Y; Zhao M; Chen W; Yu H; Jia W; Pan H; Zhang X Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409115 [No Abstract] [Full Text] [Related]
33. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Guo Q; Dong W; Li S; Lu X; Wang P; Zhang X; Wang Y; Ma P Microbiol Res; 2014; 169(7-8):533-40. PubMed ID: 24380713 [TBL] [Abstract][Full Text] [Related]
34. Isolation of lipopeptide antibiotics from Huang Y; Zhang X; Xu H; Zhang F; Zhang X; Yan Y; He L; Liu J Can J Microbiol; 2022 Jun; 68(6):403-411. PubMed ID: 35171710 [TBL] [Abstract][Full Text] [Related]
35. Comprehensive genomic analysis of Bacillus velezensis AL7 reveals its biocontrol potential against Verticillium wilt of cotton. Liu H; Zeng Q; Yalimaimaiti N; Wang W; Zhang R; Yao J Mol Genet Genomics; 2021 Nov; 296(6):1287-1298. PubMed ID: 34553246 [TBL] [Abstract][Full Text] [Related]
36. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648 [TBL] [Abstract][Full Text] [Related]
37. Chemical and genetic characterization of lipopeptides from Diniz GFD; Figueiredo JEF; Canuto KM; Cota LV; Souza ASQ; Simeone MLF; Tinoco SMS; Ribeiro PRV; Ferreira LVS; Marins MS; de Oliveira-Paiva CA; Dos Santos VL Front Microbiol; 2024; 15():1443327. PubMed ID: 39252841 [TBL] [Abstract][Full Text] [Related]
38. Inhibitory activity of bacterial lipopeptides against Fusarium oxysporum f.sp. Strigae. Assena MW; Pfannstiel J; Rasche F BMC Microbiol; 2024 Jun; 24(1):227. PubMed ID: 38937715 [TBL] [Abstract][Full Text] [Related]
39. Detection of biosurfactants in Bacillus species: genes and products identification. Płaza G; Chojniak J; Rudnicka K; Paraszkiewicz K; Bernat P J Appl Microbiol; 2015 Oct; 119(4):1023-34. PubMed ID: 26171834 [TBL] [Abstract][Full Text] [Related]
40. Diversity of cyclic antimicrobial lipopeptides from Bacillus P34 revealed by functional annotation and comparative genome analysis. Stincone P; Veras FF; Pereira JQ; Mayer FQ; Varela APM; Brandelli A Microbiol Res; 2020 Sep; 238():126515. PubMed ID: 32531696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]