BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 30358191)

  • 1. Identification of key candidate genes, pathways and related prognostic values in ER-negative/HER2-negative breast cancer by bioinformatics analysis.
    Shao N; Yuan K; Zhang Y; Yun Cheang T; Li J; Lin Y
    J BUON; 2018; 23(4):891-901. PubMed ID: 30358191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estrogen receptor 1 and progesterone receptor are distinct biomarkers and prognostic factors in estrogen receptor-positive breast cancer: Evidence from a bioinformatic analysis.
    Wu JR; Zhao Y; Zhou XP; Qin X
    Biomed Pharmacother; 2020 Jan; 121():109647. PubMed ID: 31733575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the key pathways and genes involved in HER2-positive breast cancer with brain metastasis.
    Lu X; Gao C; Liu C; Zhuang J; Su P; Li H; Wang X; Sun C
    Pathol Res Pract; 2019 Aug; 215(8):152475. PubMed ID: 31178227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis.
    Li T; Gao X; Han L; Yu J; Li H
    World J Surg Oncol; 2018 Jun; 16(1):114. PubMed ID: 29921304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of breast cancer hub genes and analysis of prognostic values using integrated bioinformatics analysis.
    Fang E; Zhang X
    Cancer Biomark; 2017 Dec; 21(1):373-381. PubMed ID: 29081411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.
    Zhai Q; Li H; Sun L; Yuan Y; Wang X
    Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of key differentially expressed genes between ER-positive/HER2-negative breast cancer and ER-negative/HER2-negative breast cancer using integrated bioinformatics analysis.
    Gan S; Dai H; Li R; Liu W; Ye R; Ha Y; Di X; Hu W; Zhang Z; Sun Y
    Gland Surg; 2020 Jun; 9(3):661-675. PubMed ID: 32775256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of critical genes associated with poor prognosis in breast cancer via integrated bioinformatics analyses.
    Liu D; Zhang J; Li L; Wang Q; Lan Y
    J BUON; 2020; 25(6):2537-2545. PubMed ID: 33455094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis.
    Xu Z; Zhou Y; Cao Y; Dinh TL; Wan J; Zhao M
    Med Oncol; 2016 Nov; 33(11):130. PubMed ID: 27757782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of core genes and potential molecular mechanisms in breast cancer using bioinformatics analysis.
    Liu F; Wu Y; Mi Y; Gu L; Sang M; Geng C
    Pathol Res Pract; 2019 Jul; 215(7):152436. PubMed ID: 31076281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficient Screening Method for Identification of Key Genes in Breast Cancer Through Microarray and Bioinformatics.
    Liu Z; Liang G; Tan L; Su AN; Jiang W; Gong C
    Anticancer Res; 2017 Aug; 37(8):4329-4335. PubMed ID: 28739725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying hepatocellular carcinoma-related hub genes by bioinformatics analysis and CYP2C8 is a potential prognostic biomarker.
    Li C; Zhou D; Jiang X; Liu M; Tang H; Mei Z
    Gene; 2019 May; 698():9-18. PubMed ID: 30825595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target gene screening and evaluation of prognostic values in non-small cell lung cancers by bioinformatics analysis.
    Piao J; Sun J; Yang Y; Jin T; Chen L; Lin Z
    Gene; 2018 Mar; 647():306-311. PubMed ID: 29305979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of potential key genes for HER-2 positive breast cancer based on bioinformatics analysis.
    Lin Y; Fu F; Lv J; Wang M; Li Y; Zhang J; Wang C
    Medicine (Baltimore); 2020 Jan; 99(1):e18445. PubMed ID: 31895772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of hub genes to regulate breast cancer metastasis to brain by bioinformatics analyses.
    Tang D; Zhao X; Zhang L; Wang Z; Wang C
    J Cell Biochem; 2019 Jun; 120(6):9522-9531. PubMed ID: 30506958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of differentially expressed genes regulated by molecular signature in breast cancer-associated fibroblasts by bioinformatics analysis.
    Vastrad B; Vastrad C; Tengli A; Iliger S
    Arch Gynecol Obstet; 2018 Jan; 297(1):161-183. PubMed ID: 29063236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Analysis of Fibroblast Growth Factor Receptor (FGFR) Family Genes in Breast Cancer by Integrating Online Databases and Bioinformatics.
    Zhou Z; Wu B; Tang X; Ke R; Zou Q
    Med Sci Monit; 2020 May; 26():e923517. PubMed ID: 32381997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of invasive key genes in breast cancer by bioinformatics analysis.
    Quan Y; Wang S
    J BUON; 2020; 25(5):2255-2264. PubMed ID: 33277843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.