BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 30358836)

  • 1. FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat.
    Goold R; Flower M; Moss DH; Medway C; Wood-Kaczmar A; Andre R; Farshim P; Bates GP; Holmans P; Jones L; Tabrizi SJ
    Hum Mol Genet; 2019 Feb; 28(4):650-661. PubMed ID: 30358836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out.
    Loupe JM; Pinto RM; Kim KH; Gillis T; Mysore JS; Andrew MA; Kovalenko M; Murtha R; Seong I; Gusella JF; Kwak S; Howland D; Lee R; Lee JM; Wheeler VC; MacDonald ME
    Hum Mol Genet; 2020 Nov; 29(18):3044-3053. PubMed ID: 32876667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset.
    McAllister B; Donaldson J; Binda CS; Powell S; Chughtai U; Edwards G; Stone J; Lobanov S; Elliston L; Schuhmacher LN; Rees E; Menzies G; Ciosi M; Maxwell A; Chao MJ; Hong EP; Lucente D; Wheeler V; Lee JM; MacDonald ME; Long JD; Aylward EH; Landwehrmeyer GB; Rosser AE; ; Paulsen JS; ; Williams NM; Gusella JF; Monckton DG; Allen ND; Holmans P; Jones L; Massey TH
    Nat Neurosci; 2022 Apr; 25(4):446-457. PubMed ID: 35379994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease.
    Goold R; Hamilton J; Menneteau T; Flower M; Bunting EL; Aldous SG; Porro A; Vicente JR; Allen ND; Wilkinson H; Bates GP; Sartori AA; Thalassinos K; Balmus G; Tabrizi SJ
    Cell Rep; 2021 Aug; 36(9):109649. PubMed ID: 34469738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders.
    Deshmukh AL; Porro A; Mohiuddin M; Lanni S; Panigrahi GB; Caron MC; Masson JY; Sartori AA; Pearson CE
    J Huntingtons Dis; 2021; 10(1):95-122. PubMed ID: 33579867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profiles complement the analysis of genomic modifiers of the clinical onset of Huntington disease.
    Wright GEB; Caron NS; Ng B; Casal L; Casazza W; Xu X; Ooi J; Pouladi MA; Mostafavi S; Ross CJD; Hayden MR
    Hum Mol Genet; 2020 Sep; 29(16):2788-2802. PubMed ID: 32898862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects.
    Kim KH; Hong EP; Shin JW; Chao MJ; Loupe J; Gillis T; Mysore JS; Holmans P; Jones L; Orth M; Monckton DG; Long JD; Kwak S; Lee R; Gusella JF; MacDonald ME; Lee JM
    Am J Hum Genet; 2020 Jul; 107(1):96-110. PubMed ID: 32589923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability.
    Deshmukh AL; Caron MC; Mohiuddin M; Lanni S; Panigrahi GB; Khan M; Engchuan W; Shum N; Faruqui A; Wang P; Yuen RKC; Nakamori M; Nakatani K; Masson JY; Pearson CE
    Cell Rep; 2021 Dec; 37(10):110078. PubMed ID: 34879276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttranscriptional regulation of
    Kim KH; Hong EP; Lee Y; McLean ZL; Elezi E; Lee R; Kwak S; McAllister B; Massey TH; Lobanov S; Holmans P; Orth M; Ciosi M; Monckton DG; Long JD; Lucente D; Wheeler VC; MacDonald ME; Gusella JF; Lee JM
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2322924121. PubMed ID: 38607933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies.
    Wright GEB; Black HF; Collins JA; Gall-Duncan T; Caron NS; Pearson CE; Hayden MR
    Lancet Neurol; 2020 Nov; 19(11):930-939. PubMed ID: 33098802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FAN1 removes triplet repeat extrusions via a PCNA- and RFC-dependent mechanism.
    Phadte AS; Bhatia M; Ebert H; Abdullah H; Elrazaq EA; Komolov KE; Pluciennik A
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2302103120. PubMed ID: 37549289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes.
    Ciosi M; Maxwell A; Cumming SA; Hensman Moss DJ; Alshammari AM; Flower MD; Durr A; Leavitt BR; Roos RAC; ; ; Holmans P; Jones L; Langbehn DR; Kwak S; Tabrizi SJ; Monckton DG
    EBioMedicine; 2019 Oct; 48():568-580. PubMed ID: 31607598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington's disease.
    Aldous SG; Smith EJ; Landles C; Osborne GF; Cañibano-Pico M; Nita IM; Phillips J; Zhang Y; Jin B; Hirst MB; Benn CL; Bond BC; Edelmann W; Greene JR; Bates GP
    Brain; 2024 May; 147(5):1784-1798. PubMed ID: 38387080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.
    Kovalenko M; Dragileva E; St Claire J; Gillis T; Guide JR; New J; Dong H; Kucherlapati R; Kucherlapati MH; Ehrlich ME; Lee JM; Wheeler VC
    PLoS One; 2012; 7(9):e44273. PubMed ID: 22970194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FAN1-MLH1 interaction affects repair of DNA interstrand cross-links and slipped-CAG/CTG repeats.
    Porro A; Mohiuddin M; Zurfluh C; Spegg V; Dai J; Iehl F; Ropars V; Collotta G; Fishwick KM; Mozaffari NL; Guérois R; Jiricny J; Altmeyer M; Charbonnier JB; Pearson CE; Sartori AA
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34330701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds.
    Ament SA; Pearl JR; Grindeland A; St Claire J; Earls JC; Kovalenko M; Gillis T; Mysore J; Gusella JF; Lee JM; Kwak S; Howland D; Lee MY; Baxter D; Scherler K; Wang K; Geman D; Carroll JB; MacDonald ME; Carlson G; Wheeler VC; Price ND; Hood LE
    Hum Mol Genet; 2017 Mar; 26(5):913-922. PubMed ID: 28334820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for Assessing DNA Repair and Repeat Expansion in Huntington's Disease.
    Massey T; McAllister B; Jones L
    Methods Mol Biol; 2018; 1780():483-495. PubMed ID: 29856032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Huntington's Disease: Relationship Between Phenotype and Genotype.
    Sun YM; Zhang YB; Wu ZY
    Mol Neurobiol; 2017 Jan; 54(1):342-348. PubMed ID: 26742514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases.
    Bettencourt C; Hensman-Moss D; Flower M; Wiethoff S; Brice A; Goizet C; Stevanin G; Koutsis G; Karadima G; Panas M; Yescas-Gómez P; García-Velázquez LE; Alonso-Vilatela ME; Lima M; Raposo M; Traynor B; Sweeney M; Wood N; Giunti P; ; Durr A; Holmans P; Houlden H; Tabrizi SJ; Jones L
    Ann Neurol; 2016 Jun; 79(6):983-90. PubMed ID: 27044000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype.
    Wegrzynowicz M; Bichell TJ; Soares BD; Loth MK; McGlothan JS; Mori S; Alikhan FS; Hua K; Coughlin JM; Holt HK; Jetter CS; Pomper MG; Osmand AP; Guilarte TR; Bowman AB
    J Huntingtons Dis; 2015; 4(1):17-36. PubMed ID: 26333255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.