These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30358919)

  • 1. Parallel Fabrication of Self-Assembled Nanogaps for Molecular Electronic Devices.
    Eklöf-Österberg J; Gschneidtner T; Tebikachew B; Lara-Avila S; Moth-Poulsen K
    Small; 2018 Dec; 14(50):e1803471. PubMed ID: 30358919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled nanogaps for molecular electronics.
    Tang Q; Tong Y; Jain T; Hassenkam T; Wan Q; Moth-Poulsen K; Bjørnholm T
    Nanotechnology; 2009 Jun; 20(24):245205. PubMed ID: 19468160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From nanofabrication to self-fabrication--tailored chemistry for control of single molecule electronic devices.
    Moth-Poulsen K; Bjørnholm T
    Chimia (Aarau); 2010; 64(6):404-8. PubMed ID: 21137716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet chemical synthesis of soluble gold nanogaps.
    Jain T; Tang Q; Bjørnholm T; Nørgaard K
    Acc Chem Res; 2014 Jan; 47(1):2-11. PubMed ID: 23944385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced charge transport across molecule-nanoparticle-molecule sandwiches.
    Zhou P; Qiao X; Milan DC; Higgins SJ; Vezzoli A; Nichols RJ
    Phys Chem Chem Phys; 2023 Mar; 25(10):7176-7183. PubMed ID: 36810584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods.
    Jain T; Westerlund F; Johnson E; Moth-Poulsen K; Bjørnholm T
    ACS Nano; 2009 Apr; 3(4):828-34. PubMed ID: 19284731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conquest of middle-earth: combining top-down and bottom-up nanofabrication for constructing nanoparticle based devices.
    Diaz Fernandez YA; Gschneidtner TA; Wadell C; Fornander LH; Lara Avila S; Langhammer C; Westerlund F; Moth-Poulsen K
    Nanoscale; 2014 Dec; 6(24):14605-16. PubMed ID: 25208687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosized optoelectronic devices based on photoactivated proteins.
    Dimonte A; Frache S; Erokhin V; Piccinini G; Demarchi D; Milano F; Micheli GD; Carrara S
    Biomacromolecules; 2012 Nov; 13(11):3503-9. PubMed ID: 23046154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alligator clips to molecular dimensions.
    Prokopuk N; Son KA
    J Phys Condens Matter; 2008 Sep; 20(37):374116. PubMed ID: 21694423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-Based Fabrication for Nanoelectronics.
    Dai X; Li Q; Aldalbahi A; Wang L; Fan C; Liu X
    Nano Lett; 2020 Aug; 20(8):5604-5615. PubMed ID: 32787185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level.
    Luo S; Mancini A; Berté R; Hoff BH; Maier SA; de Mello JC
    Adv Mater; 2021 May; 33(20):e2100491. PubMed ID: 33939199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes.
    Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH
    Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolayers and multilayers of conjugated polymers as nanosized electronic components.
    Zotti G; Vercelli B; Berlin A
    Acc Chem Res; 2008 Sep; 41(9):1098-109. PubMed ID: 18570441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules.
    Tian JH; Yang Y; Liu B; Schöllhorn B; Wu DY; Maisonhaute E; Muns AS; Chen Y; Amatore C; Tao NJ; Tian ZQ
    Nanotechnology; 2010 Jul; 21(27):274012. PubMed ID: 20571199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups.
    Gittins DI; Bethell D; Schiffrin DJ; Nichols RJ
    Nature; 2000 Nov; 408(6808):67-9. PubMed ID: 11081506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-Scale Electronics: From Concept to Function.
    Xiang D; Wang X; Jia C; Lee T; Guo X
    Chem Rev; 2016 Apr; 116(7):4318-440. PubMed ID: 26979510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of low energy barrier contact resistance in charge transport measurements of gold nanoparticle+dithiol-based self-assembled films.
    Joanis P; Tie M; Dhirani AA
    Langmuir; 2013 Jan; 29(4):1264-72. PubMed ID: 23294421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact Architecture Controls Conductance in Monolayer Devices.
    Saller KB; Liao KC; Riedl H; Lugli P; Koblmüller G; Schwartz J; Tornow M
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28446-28450. PubMed ID: 32519835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.