These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Biological and dosimetric characterisation of spatially fractionated proton minibeams. Meyer J; Stewart RD; Smith D; Eagle J; Lee E; Cao N; Ford E; Hashemian R; Schuemann J; Saini J; Marsh S; Emery R; Dorman E; Schwartz J; Sandison G Phys Med Biol; 2017 Nov; 62(24):9260-9281. PubMed ID: 29053105 [TBL] [Abstract][Full Text] [Related]
7. FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy. Mazal A; Prezado Y; Ares C; de Marzi L; Patriarca A; Miralbell R; Favaudon V Br J Radiol; 2020 Mar; 93(1107):20190807. PubMed ID: 32003574 [TBL] [Abstract][Full Text] [Related]
8. Spatially fractionated (GRID) radiation therapy using proton pencil beam scanning (PBS): Feasibility study and clinical implementation. Gao M; Mohiuddin MM; Hartsell WF; Pankuch M Med Phys; 2018 Apr; 45(4):1645-1653. PubMed ID: 29431867 [TBL] [Abstract][Full Text] [Related]
9. Improving the dose distributions in minibeam radiation therapy: Helium ions vs protons. Schneider T; Patriarca A; Prezado Y Med Phys; 2019 Aug; 46(8):3640-3648. PubMed ID: 31173369 [TBL] [Abstract][Full Text] [Related]
10. Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue. Bräuer-Krisch E; Serduc R; Siegbahn EA; Le Duc G; Prezado Y; Bravin A; Blattmann H; Laissue JA Mutat Res; 2010; 704(1-3):160-6. PubMed ID: 20034592 [TBL] [Abstract][Full Text] [Related]
11. Minibeam therapy with protons and light ions: physical feasibility and potential to reduce radiation side effects and to facilitate hypofractionation. Dilmanian FA; Eley JG; Krishnan S Int J Radiat Oncol Biol Phys; 2015 Jun; 92(2):469-74. PubMed ID: 25771360 [TBL] [Abstract][Full Text] [Related]
12. Towards high spatial resolution tissue-equivalent dosimetry for microbeam radiation therapy using organic semiconductors. Posar JA; Large M; Alnaghy S; Paino JR; Butler DJ; Griffith MJ; Hood S; Lerch MLF; Rosenfeld A; Sellin PJ; Guatelli S; Petasecca M J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1444-1454. PubMed ID: 34475292 [TBL] [Abstract][Full Text] [Related]
13. Optimization of beam arrangements in proton minibeam radiotherapy by cell survival simulations. Sammer M; Greubel C; Girst S; Dollinger G Med Phys; 2017 Nov; 44(11):6096-6104. PubMed ID: 28880369 [TBL] [Abstract][Full Text] [Related]
14. Tuning spatially fractionated radiotherapy dose profiles using the moiré effect. Reaz F; Traneus E; Bassler N Sci Rep; 2024 Apr; 14(1):8468. PubMed ID: 38605022 [TBL] [Abstract][Full Text] [Related]
16. Proton microbeam radiotherapy with scanned pencil-beams--Monte Carlo simulations. Kłodowska M; Olko P; Waligórski MP Phys Med; 2015 Sep; 31(6):621-6. PubMed ID: 25982232 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy. Guardiola C; Peucelle C; Prezado Y Med Phys; 2017 Apr; 44(4):1470-1478. PubMed ID: 28129665 [TBL] [Abstract][Full Text] [Related]
18. The Peaks and Valleys of Photon Versus Proton Spatially Fractionated Radiotherapy. Sheikh K; Li H; Wright JL; Yanagihara TK; Halthore A Semin Radiat Oncol; 2024 Jul; 34(3):292-301. PubMed ID: 38880538 [TBL] [Abstract][Full Text] [Related]
19. DOSIMETRIC CHARACTERIZATION OF COLLIMATORS FOR SPATIALLY FRACTIONATED PROTON THERAPY OF THE EYE. Tobola-Galus A; Swakon J; Olko P Radiat Prot Dosimetry; 2018 Aug; 180(1-4):351-354. PubMed ID: 29529272 [TBL] [Abstract][Full Text] [Related]
20. TVL1-IMPT: Optimization of Peak-to-Valley Dose Ratio Via Joint Total-Variation and L1 Dose Regularization for Spatially Fractionated Pencil-Beam-Scanning Proton Therapy. Zhang W; Li W; Lin Y; Wang F; Chen RC; Gao H Int J Radiat Oncol Biol Phys; 2023 Mar; 115(3):768-778. PubMed ID: 36155212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]