These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30359279)

  • 1. Enhanced trypsin thermostability in Pichia pastoris through truncating the flexible region.
    Liu L; Yu H; Du K; Wang Z; Gan Y; Huang H
    Microb Cell Fact; 2018 Oct; 17(1):165. PubMed ID: 30359279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Strategy for Thermostability Improvement of Trypsin Based on N-Glycosylation within the Ω-Loop Region.
    Guo C; Liu Y; Yu H; Du K; Gan Y; Huang H
    J Microbiol Biotechnol; 2016 Jul; 26(7):1163-72. PubMed ID: 27012235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris.
    Yu XW; Wang R; Zhang M; Xu Y; Xiao R
    Microb Cell Fact; 2012 Aug; 11():102. PubMed ID: 22866667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of proline substitutions within flexible regions on thermostability of luciferase.
    Yu H; Zhao Y; Guo C; Gan Y; Huang H
    Biochim Biophys Acta; 2015 Jan; 1854(1):65-72. PubMed ID: 25448017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: A thermostability improvement mechanism.
    Farnoosh G; Khajeh K; Mohammadi M; Hassanpour K; Latifi AM; Aghamollaei H
    J Biosci; 2020; 45():. PubMed ID: 32345780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis.
    Yin X; Li JF; Wang CJ; Hu D; Wu Q; Gu Y; Wu MC
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10047-56. PubMed ID: 26266754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Enzymatic Stability and Catalytic Efficiency of Recombinant
    Yang N; Ling Z; Peng L; Liu Y; Liu P; Zhang K; Aman ; Shi J; Li X
    J Microbiol Biotechnol; 2018 Sep; 28(9):1482-1492. PubMed ID: 30369113
    [No Abstract]   [Full Text] [Related]  

  • 9. Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide.
    Ling Z; Kang Z; Liu Y; Liu S; Chen J; Du G
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1819-27. PubMed ID: 24458877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of
    Guo Y; Tu T; Zheng J; Bai Y; Huang H; Su X; Wang Y; Wang Y; Yao B; Luo H
    J Agric Food Chem; 2019 Sep; 67(37):10505-10512. PubMed ID: 31462045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115.
    Shu M; Shen W; Wang X; Wang F; Ma L; Zhai C
    Protein Expr Purif; 2015 Oct; 114():149-55. PubMed ID: 26118809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability.
    Li SF; Xu JY; Bao YJ; Zheng HC; Song H
    J Biotechnol; 2015 Sep; 210():8-14. PubMed ID: 26116135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design to improve thermostability and specific activity of the truncated Fibrobacter succinogenes 1,3-1,4-β-D-glucanase.
    Huang JW; Cheng YS; Ko TP; Lin CY; Lai HL; Chen CC; Ma Y; Zheng Y; Huang CH; Zou P; Liu JR; Guo RT
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):111-21. PubMed ID: 21959377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.
    Niu C; Zhu L; Xu X; Li Q
    PLoS One; 2016; 11(4):e0154036. PubMed ID: 27100881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of amino acid residues responsible for increased thermostability of feruloyl esterase A from Aspergillus niger using the PoPMuSiC algorithm.
    Zhang SB; Wu ZL
    Bioresour Technol; 2011 Jan; 102(2):2093-6. PubMed ID: 20801026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Deletion of a dynamic surface loop improves thermostability of (R)-selective amine transaminase from Aspergillus terreus].
    Xie D; Lv C; Fang H; Yang W; Hu S; Zhao W; Huang J; Mei L
    Sheng Wu Gong Cheng Xue Bao; 2017 Dec; 33(12):1923-1933. PubMed ID: 29271170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consensus design for improved thermostability of lipoxygenase from Anabaena sp. PCC 7120.
    Qian H; Zhang C; Lu Z; Xia B; Bie X; Zhao H; Lu F; Yang GY
    BMC Biotechnol; 2018 Sep; 18(1):57. PubMed ID: 30236091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of thermostability in bacterial 1,3-1,4-β-glucanases through spatial compartmentalization of mutational hotspots.
    Niu C; Zhu L; Xu X; Li Q
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1085-1097. PubMed ID: 27645297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface.
    Han ZL; Han SY; Zheng SP; Lin Y
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):117-26. PubMed ID: 19533118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.