These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 3035946)

  • 1. Myocardial amino acid transport by canine sarcolemma vesicles.
    Young LH; Zaret BL; Barrett EJ
    Am J Physiol; 1987 Jun; 252(6 Pt 2):H1070-6. PubMed ID: 3035946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of cardiac sarcolemmal vesicles: high sodium pump content and ATP-dependent, calmodulin-activated calcium uptake.
    Kuwayama H; Kanazawa T
    J Biochem; 1982 Apr; 91(4):1419-26. PubMed ID: 6284727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of frog heart sarcolemma possessing (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities.
    Morcos NC
    Biochim Biophys Acta; 1981 Apr; 643(1):55-62. PubMed ID: 6113007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of lipid intermediates on Ca2+ and Na+ permeability and (Na+ + K+)-ATPase of cardiac sarcolemma. A possible role in myocardial ischemia.
    Lamers JM; Stinis HT; Montfoort A; Hülsmann WC
    Biochim Biophys Acta; 1984 Jul; 774(1):127-37. PubMed ID: 6329291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and pH dependence of L-glutamate transport in sarcolemmal vesicles from rat hearts.
    Dinkelborg LM; Kinne RK; Grieshaber MK
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H194-201. PubMed ID: 7840264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of cardenolids and sodium ion gradient on ATP-dependent Ca2+ accumulation in cardiac sarcolemmal vesicles].
    Preobrazhenskiĭ AN; Kupriianov VV; Saks VA; Grosse R; Spitzer E
    Biokhimiia; 1982 Jan; 47(1):126-36. PubMed ID: 6279179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-dependent Na+ transport in cardiac sarcolemmal vesicles.
    Philipson KD; Nishimoto AY
    Biochim Biophys Acta; 1983 Aug; 733(1):133-41. PubMed ID: 6309224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid and glucose transport in sarcolemmal vesicles from chick embryo heart.
    Paris S; Ailhaud G
    Biochim Biophys Acta; 1980 Oct; 601(3):630-9. PubMed ID: 7417441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles.
    Seiler SM; Cragoe EJ; Jones LR
    J Biol Chem; 1985 Apr; 260(8):4869-76. PubMed ID: 2985568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcolemmal Na-Ca exchange and sarcoplasmic reticulum calcium uptake in developing chick heart.
    Vetter R; Will H
    J Mol Cell Cardiol; 1986 Dec; 18(12):1267-75. PubMed ID: 3029391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hypothermic ischemia and reperfusion on calcium transport by myocardial sarcolemma and sarcoplasmic reticulum.
    Fukumoto K; Takenaka H; Onitsuka T; Koga Y; Hamada M
    J Mol Cell Cardiol; 1991 May; 23(5):525-35. PubMed ID: 1832191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes.
    Schröder B; Schöneberger M; Rodehutscord M; Pfeffer E; Breves G
    J Comp Physiol B; 2003 Aug; 173(6):511-8. PubMed ID: 12811487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [ATP-dependent transport of Ca2+ in myocardium sarcolemma vesicles and its activation by phorbol esters].
    Kurskiĭ MD; Kocherga VI; Nesterenko NV; Vorobets ZD; Kurchenko LK
    Biokhimiia; 1988 Jun; 53(6):960-4. PubMed ID: 2972323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of glutamine transport in sarcolemmal vesicles from rat skeletal muscle.
    Ahmed A; Taylor PM; Rennie MJ
    Am J Physiol; 1990 Aug; 259(2 Pt 1):E284-91. PubMed ID: 2116727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload.
    Nakanishi H; Makino N; Hata T; Matsui H; Yano K; Yanaga T
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H349-56. PubMed ID: 2548404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac sarcolemma as a possible site of action of caffeine in rat heart.
    Gupta MP; Makino N; Takeo S; Kaneko M; Dhalla NS
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1188-94. PubMed ID: 2175796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-H+ exchange in cardiac sarcolemmal vesicles.
    Pierce GN; Philipson KD
    Biochim Biophys Acta; 1985 Aug; 818(2):109-16. PubMed ID: 2992585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by proteinase pretreatment.
    Philipson KD; Nishimoto AY
    Am J Physiol; 1982 Sep; 243(3):C191-5. PubMed ID: 6287861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Placental membrane transport: leucine transport across the brush border and basal cell membrane surfaces.
    Anand RJ; Kanwar U; Sanyal SN
    Res Exp Med (Berl); 1996; 196(1):29-43. PubMed ID: 8833485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.