BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

761 related articles for article (PubMed ID: 30359560)

  • 21. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0
    Aslan Y; Tadjuidje E; Zorn AM; Cha SW
    Development; 2017 Aug; 144(15):2852-2858. PubMed ID: 28694259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using Microinjection to Generate Genetically Modified Caenorhabditis elegans by CRISPR/Cas9 Editing.
    Iyer J; DeVaul N; Hansen T; Nebenfuehr B
    Methods Mol Biol; 2019; 1874():431-457. PubMed ID: 30353529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas9 technology and its application in haematological disorders.
    Zhang H; McCarty N
    Br J Haematol; 2016 Oct; 175(2):208-225. PubMed ID: 27619566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mosaicism diminishes the value of pre-implantation embryo biopsies for detecting CRISPR/Cas9 induced mutations in sheep.
    Vilarino M; Suchy FP; Rashid ST; Lindsay H; Reyes J; McNabb BR; van der Meulen T; Huising MO; Nakauchi H; Ross PJ
    Transgenic Res; 2018 Dec; 27(6):525-537. PubMed ID: 30284144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple Protocol for Generating and Genotyping Genome-Edited Mice With CRISPR-Cas9 Reagents.
    Fernández A; Morín M; Muñoz-Santos D; Josa S; Montero A; Rubio-Fernández M; Cantero M; Fernández J; Del Hierro MJ; Castrillo M; Moreno-Pelayo MÁ; Montoliu L
    Curr Protoc Mouse Biol; 2020 Mar; 10(1):e69. PubMed ID: 32159922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental competence of porcine genome-edited zygotes.
    Gil MA; Martinez CA; Nohalez A; Parrilla I; Roca J; Wu J; Ross PJ; Cuello C; Izpisua JC; Martinez EA
    Mol Reprod Dev; 2017 Sep; 84(9):814-821. PubMed ID: 28471514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of non-mosaic genome edited porcine embryos by injection of CRISPR/Cas9 into germinal vesicle oocytes.
    Su X; Chen W; Cai Q; Liang P; Chen Y; Cong P; Huang J
    J Genet Genomics; 2019 Jul; 46(7):335-342. PubMed ID: 31378649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.
    Liu C; Zhang L; Liu H; Cheng K
    J Control Release; 2017 Nov; 266():17-26. PubMed ID: 28911805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Hope and Hype of CRISPR-Cas9 Genome Editing: A Review.
    Musunuru K
    JAMA Cardiol; 2017 Aug; 2(8):914-919. PubMed ID: 28614576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9: a breakthrough in generating mouse models for endocrinologists.
    Markossian S; Flamant F
    J Mol Endocrinol; 2016 Aug; 57(2):R81-92. PubMed ID: 27272521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts.
    de Carvalho TG; Schuh R; Pasqualim G; Pellenz FM; Filippi-Chiela EC; Giugliani R; Baldo G; Matte U
    Gene; 2018 Dec; 678():33-37. PubMed ID: 30081189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass.
    Wang X; Niu Y; Zhou J; Zhu H; Ma B; Yu H; Yan H; Hua J; Huang X; Qu L; Chen Y
    Anim Genet; 2018 Feb; 49(1):43-51. PubMed ID: 29446146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9.
    Fang J; Chen T; Pan Q; Wang Q
    J Exp Zool B Mol Dev Evol; 2018 Jun; 330(4):242-246. PubMed ID: 29873175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.