BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30359724)

  • 1. Misincorporation signatures for detecting modifications in mRNA: Not as simple as it sounds.
    Sas-Chen A; Schwartz S
    Methods; 2019 Mar; 156():53-59. PubMed ID: 30359724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA modifications in structure prediction - Status quo and future challenges.
    Tanzer A; Hofacker IL; Lorenz R
    Methods; 2019 Mar; 156():32-39. PubMed ID: 30385321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mito-Ψ-Seq: A High-Throughput Method for Systematic Mapping of Pseudouridine Within Mitochondrial RNA.
    Sas-Chen A; Nir R; Schwartz S
    Methods Mol Biol; 2021; 2192():103-115. PubMed ID: 33230769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for the Detection of Adenosine-to-Inosine Editing Events in Cellular RNA.
    Oakes E; Vadlamani P; Hundley HA
    Methods Mol Biol; 2017; 1648():103-127. PubMed ID: 28766293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-wide identification of A-to-I RNA editing sites using ICE-seq.
    Okada S; Ueda H; Noda Y; Suzuki T
    Methods; 2019 Mar; 156():66-78. PubMed ID: 30578846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-generation sequencing technologies for detection of modified nucleotides in RNAs.
    Schwartz S; Motorin Y
    RNA Biol; 2017 Sep; 14(9):1124-1137. PubMed ID: 27791472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome-wide Mapping of Internal N
    Zhang LS; Liu C; Ma H; Dai Q; Sun HL; Luo G; Zhang Z; Zhang L; Hu L; Dong X; He C
    Mol Cell; 2019 Jun; 74(6):1304-1316.e8. PubMed ID: 31031084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing RNA modifications from noise in epitranscriptome maps.
    Grozhik AV; Jaffrey SR
    Nat Chem Biol; 2018 Feb; 14(3):215-225. PubMed ID: 29443978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for RNA Modification Mapping Using Deep Sequencing: Established and New Emerging Technologies.
    Motorin Y; Helm M
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30634534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution.
    Khoddami V; Yerra A; Mosbruger TL; Fleming AM; Burrows CJ; Cairns BR
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6784-6789. PubMed ID: 30872485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update.
    Motorin Y; Marchand V
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33669207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the epitranscriptome by native RNA sequencing.
    Begik O; Mattick JS; Novoa EM
    RNA; 2022 Nov; 28(11):1430-1439. PubMed ID: 36104106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. m
    Schwartz S
    RNA; 2018 Nov; 24(11):1427-1436. PubMed ID: 30131402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base-Resolution Mapping Reveals Distinct m
    Li X; Xiong X; Zhang M; Wang K; Chen Y; Zhou J; Mao Y; Lv J; Yi D; Chen XW; Wang C; Qian SB; Yi C
    Mol Cell; 2017 Dec; 68(5):993-1005.e9. PubMed ID: 29107537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The birth of the Epitranscriptome: deciphering the function of RNA modifications.
    Saletore Y; Meyer K; Korlach J; Vilfan ID; Jaffrey S; Mason CE
    Genome Biol; 2012 Oct; 13(10):175. PubMed ID: 23113984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitranscriptomic influences on development and disease.
    Hsu PJ; Shi H; He C
    Genome Biol; 2017 Oct; 18(1):197. PubMed ID: 29061143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs.
    Legrand C; Tuorto F; Hartmann M; Liebers R; Jacob D; Helm M; Lyko F
    Genome Res; 2017 Sep; 27(9):1589-1596. PubMed ID: 28684555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tModBase: deciphering the landscape of tRNA modifications and their dynamic changes from epitranscriptome data.
    Lei HT; Wang ZH; Li B; Sun Y; Mei SQ; Yang JH; Qu LH; Zheng LL
    Nucleic Acids Res; 2023 Jan; 51(D1):D315-D327. PubMed ID: 36408909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification.
    Warren JM; Salinas-Giegé T; Hummel G; Coots NL; Svendsen JM; Brown KC; Drouard L; Sloan DB
    RNA Biol; 2021 Jan; 18(1):64-78. PubMed ID: 32715941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HAMR: high-throughput annotation of modified ribonucleotides.
    Ryvkin P; Leung YY; Silverman IM; Childress M; Valladares O; Dragomir I; Gregory BD; Wang LS
    RNA; 2013 Dec; 19(12):1684-92. PubMed ID: 24149843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.