These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30359808)

  • 1. Lignin polymerization: how do plants manage the chemistry so well?
    Tobimatsu Y; Schuetz M
    Curr Opin Biotechnol; 2019 Apr; 56():75-81. PubMed ID: 30359808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BLISS: Shining a light on lignification in plants.
    Simon C; Lion C; Huss B; Blervacq AS; Spriet C; Guérardel Y; Biot C; Hawkins S
    Plant Signal Behav; 2017 Aug; 12(8):e1359366. PubMed ID: 28786751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolignol export by diffusion down a polymerization-induced concentration gradient.
    Perkins ML; Schuetz M; Unda F; Chen KT; Bally MB; Kulkarni JA; Yan Y; Pico J; Castellarin SD; Mansfield SD; Samuels AL
    Plant Cell; 2022 Apr; 34(5):2080-2095. PubMed ID: 35167693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant.
    Cesarino I; Araújo P; Sampaio Mayer JL; Vicentini R; Berthet S; Demedts B; Vanholme B; Boerjan W; Mazzafera P
    J Exp Bot; 2013 Apr; 64(6):1769-81. PubMed ID: 23418623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers.
    van Parijs FR; Morreel K; Ralph J; Boerjan W; Merks RM
    Plant Physiol; 2010 Jul; 153(3):1332-44. PubMed ID: 20472753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin biosynthesis: old roads revisited and new roads explored.
    Dixon RA; Barros J
    Open Biol; 2019 Dec; 9(12):190215. PubMed ID: 31795915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Key Role for Apoplastic H
    Laitinen T; Morreel K; Delhomme N; Gauthier A; Schiffthaler B; Nickolov K; Brader G; Lim KJ; Teeri TH; Street NR; Boerjan W; Kärkönen A
    Plant Physiol; 2017 Jul; 174(3):1449-1475. PubMed ID: 28522458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignification: different mechanisms for a versatile polymer.
    Voxeur A; Wang Y; Sibout R
    Curr Opin Plant Biol; 2015 Feb; 23():83-90. PubMed ID: 25449731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference.
    He F; Machemer-Noonan K; Golfier P; Unda F; Dechert J; Zhang W; Hoffmann N; Samuels L; Mansfield SD; Rausch T; Wolf S
    BMC Plant Biol; 2019 Dec; 19(1):552. PubMed ID: 31830911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls.
    Pandey JL; Wang B; Diehl BG; Richard TL; Chen G; Anderson CT
    PLoS One; 2015; 10(4):e0121334. PubMed ID: 25884205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly.
    Liu CJ
    Mol Plant; 2012 Mar; 5(2):304-17. PubMed ID: 22307199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.
    Tsuyama T; Kawai R; Shitan N; Matoh T; Sugiyama J; Yoshinaga A; Takabe K; Fujita M; Yazaki K
    Plant Physiol; 2013 Jun; 162(2):918-26. PubMed ID: 23585651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of novel lignin in biomass crops.
    Vanholme R; Morreel K; Darrah C; Oyarce P; Grabber JH; Ralph J; Boerjan W
    New Phytol; 2012 Dec; 196(4):978-1000. PubMed ID: 23035778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage.
    Sasaki S; Nishida T; Tsutsumi Y; Kondo R
    FEBS Lett; 2004 Mar; 562(1-3):197-201. PubMed ID: 15044025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequestration and transport of lignin monomeric precursors.
    Liu CJ; Miao YC; Zhang KW
    Molecules; 2011 Jan; 16(1):710-27. PubMed ID: 21245806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties.
    Pesquet E; Wagner A; Grabber JH
    Curr Opin Biotechnol; 2019 Apr; 56():215-222. PubMed ID: 30849592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem.
    Morreel K; Ralph J; Kim H; Lu F; Goeminne G; Ralph S; Messens E; Boerjan W
    Plant Physiol; 2004 Nov; 136(3):3537-49. PubMed ID: 15516504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis.
    Gang DR; Costa MA; Fujita M; Dinkova-Kostova AT; Wang HB; Burlat V; Martin W; Sarkanen S; Davin LB; Lewis NG
    Chem Biol; 1999 Mar; 6(3):143-51. PubMed ID: 10074466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats.
    Tobimatsu Y; Chen F; Nakashima J; Escamilla-Treviño LL; Jackson L; Dixon RA; Ralph J
    Plant Cell; 2013 Jul; 25(7):2587-600. PubMed ID: 23903315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.