These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30360045)

  • 1. Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes.
    Yu S; Siegel DJ
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38151-38158. PubMed ID: 30360045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of lithium metal dendrites with ceramic solid electrolyte.
    Golozar M; Paolella A; Demers H; Savoie S; Girard G; Delaporte N; Gauvin R; Guerfi A; Lorrmann H; Zaghib K
    Sci Rep; 2020 Oct; 10(1):18410. PubMed ID: 33110177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries.
    Li D; Chen L; Wang T; Fan LZ
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7069-7078. PubMed ID: 29411972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries.
    Dawson JA; Canepa P; Famprikis T; Masquelier C; Islam MS
    J Am Chem Soc; 2018 Jan; 140(1):362-368. PubMed ID: 29224340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the evolution of lithium dendrites at Li
    Zhu C; Fuchs T; Weber SAL; Richter FH; Glasser G; Weber F; Butt HJ; Janek J; Berger R
    Nat Commun; 2023 Mar; 14(1):1300. PubMed ID: 36894536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li
    Grissa R; Seidl L; Dachraoui W; Sauter U; Battaglia C
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):46001-46009. PubMed ID: 36166617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain Boundary Engineering Enabled High-Performance Garnet-Type Electrolyte for Lithium Dendrite Free Lithium Metal Batteries.
    Zheng C; Lu Y; Su J; Song Z; Xiu T; Jin J; Badding ME; Wen Z
    Small Methods; 2022 Sep; 6(9):e2200667. PubMed ID: 35853248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting Formation and Reduction of Li
    Biao J; Han B; Cao Y; Li Q; Zhong G; Ma J; Chen L; Yang K; Mi J; Deng Y; Liu M; Lv W; Kang F; He YB
    Adv Mater; 2023 Mar; 35(12):e2208951. PubMed ID: 36639140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing Ultralow Activation Energies for Lithium Transport in Garnet Electrolytes.
    Pesci FM; Bertei A; Brugge RH; Emge SP; Hekselman AKO; Marbella LE; Grey CP; Aguadero A
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32806-32816. PubMed ID: 32573199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendrite nucleation in lithium-conductive ceramics.
    Li G; Monroe CW
    Phys Chem Chem Phys; 2019 Sep; 21(36):20354-20359. PubMed ID: 31497811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Going against the Grain: Atomistic Modeling of Grain Boundaries in Solid Electrolytes for Solid-State Batteries.
    Dawson JA
    ACS Mater Au; 2024 Jan; 4(1):1-13. PubMed ID: 38221922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes.
    Cheng L; Chen W; Kunz M; Persson K; Tamura N; Chen G; Doeff M
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2073-81. PubMed ID: 25563572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Formed Shields Enabling Li
    Wu JF; Pu BW; Wang D; Shi SQ; Zhao N; Guo X; Guo X
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):898-905. PubMed ID: 30516385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries.
    Khurana R; Schaefer JL; Archer LA; Coates GW
    J Am Chem Soc; 2014 May; 136(20):7395-402. PubMed ID: 24754503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Energy Barrier for Li
    Zhu Y; Wu S; Pan Y; Zhang X; Yan Z; Xiang Y
    Nanoscale Res Lett; 2020 Jul; 15(1):153. PubMed ID: 32712882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.
    Fu KK; Gong Y; Liu B; Zhu Y; Xu S; Yao Y; Luo W; Wang C; Lacey SD; Dai J; Chen Y; Mo Y; Wachsman E; Hu L
    Sci Adv; 2017 Apr; 3(4):e1601659. PubMed ID: 28435874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li
    Besli MM; Usubelli C; Metzger M; Pande V; Harry K; Nordlund D; Sainio S; Christensen J; Doeff MM; Kuppan S
    ACS Appl Mater Interfaces; 2020 May; 12(18):20605-20612. PubMed ID: 32286048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.