BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 30360049)

  • 21. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials.
    Mahapatra SD; Mohapatra PC; Aria AI; Christie G; Mishra YK; Hofmann S; Thakur VK
    Adv Sci (Weinh); 2021 Sep; 8(17):e2100864. PubMed ID: 34254467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.
    Yan J; Jeong YG
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15700-9. PubMed ID: 27237223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly piezoelectric BaTiO
    Jang SM; Yang SC
    Nanotechnology; 2018 Jun; 29(23):235602. PubMed ID: 29582775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.
    Tang H; Lin Y; Andrews C; Sodano HA
    Nanotechnology; 2011 Jan; 22(1):015702. PubMed ID: 21135449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screen Printing of Surface-Modified Barium Titanate/Polyvinylidene Fluoride Nanocomposites for High-Performance Flexible Piezoelectric Nanogenerators.
    Li H; Lim S
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications.
    Wei H; Cauchy X; Navas IO; Abderrafai Y; Chizari K; Sundararaj U; Liu Y; Leng J; Therriault D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24523-24532. PubMed ID: 31187627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosted Mechanical Piezoelectric Energy Harvesting of Polyvinylidene Fluoride/Barium Titanate Composite Porous Foam Based on Three-Dimensional Printing and Foaming Technology.
    Yang C; Chen F; Sun J; Chen N
    ACS Omega; 2021 Nov; 6(45):30769-30778. PubMed ID: 34805705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO
    Wang G; Huang Y; Wang Y; Jiang P; Huang X
    Phys Chem Chem Phys; 2017 Aug; 19(31):21058-21068. PubMed ID: 28748238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printed Piezoelectric BaTiO
    Strangis G; Labardi M; Gallone G; Milazzo M; Capaccioli S; Forli F; Cinelli P; Berrettini S; Seggiani M; Danti S; Parchi P
    Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decorating TiO
    Kang D; Wang G; Huang Y; Jiang P; Huang X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4077-4085. PubMed ID: 29300082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of PVDF/BaTiO
    Yang C; Song S; Chen F; Chen N
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41723-41734. PubMed ID: 34431292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.
    Crossley S; Kar-Narayan S
    Nanotechnology; 2015 Aug; 26(34):344001. PubMed ID: 26234477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High energy density in PVDF nanocomposites using an optimized nanowire array.
    Guo R; Luo H; Liu W; Zhou X; Tang L; Zhou K; Zhang D
    Phys Chem Chem Phys; 2018 Jul; 20(26):18031-18037. PubMed ID: 29930999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precipitation-Printed High-β Phase Poly(vinylidene fluoride) for Energy Harvesting.
    Tu R; Sprague E; Sodano HA
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58072-58081. PubMed ID: 33320534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Printing-Enabled In-Situ Orientation of BaTi
    Liu X; Shang Y; Liu J; Shao Z; Zhang C
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13361-13368. PubMed ID: 35266704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters.
    Bowland CC; Malakooti MH; Sodano HA
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):4057-4065. PubMed ID: 28094498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.
    Long YZ; Yu M; Sun B; Gu CZ; Fan Z
    Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy.
    Zhou N; Bekenstein Y; Eisler CN; Zhang D; Schwartzberg AM; Yang P; Alivisatos AP; Lewis JA
    Sci Adv; 2019 May; 5(5):eaav8141. PubMed ID: 31172026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mortise-tenon joint structured hydrophobic surface-functionalized barium titanate/polyvinylidene fluoride nanocomposites for printed self-powered wearable sensors.
    Li H; Song H; Long M; Saeed G; Lim S
    Nanoscale; 2021 Feb; 13(4):2542-2555. PubMed ID: 33475650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array.
    Fuh YK; Wang BS; Tsai CY
    Sci Rep; 2017 Jul; 7(1):6759. PubMed ID: 28754916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.