These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30360521)

  • 1. Geometric Correction for the Geostationary Ocean Color Imager from a Combination of Shoreline Matching and Frequency Matching.
    Kim HG; Son JH; Kim T
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30360521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Various Frequency Matching Schemes for Geometric Correction of Geostationary Ocean Color Imager.
    Son JH; Kim HG; Han HJ; Kim T
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31888309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric accuracy analysis of the Geostationary Ocean Color Imager (GOCI) Level 1B (L1B) product.
    Jeong J; Han H; Park Y
    Opt Express; 2020 Mar; 28(5):7634-7653. PubMed ID: 32225987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI).
    Wang M; Ahn JH; Jiang L; Shi W; Son S; Park YJ; Ryu JH
    Opt Express; 2013 Feb; 21(3):3835-49. PubMed ID: 23481840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vicarious calibration of the Geostationary Ocean Color Imager.
    Ahn JH; Park YJ; Kim W; Lee B; Oh IS
    Opt Express; 2015 Sep; 23(18):23236-58. PubMed ID: 26368426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GOCI image enhancement using an MTF compensation technique for coastal water applications.
    Oh E; Choi JK
    Opt Express; 2014 Nov; 22(22):26908-18. PubMed ID: 25401839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.
    Wang M; Shi W; Jiang L
    Opt Express; 2012 Jan; 20(2):741-53. PubMed ID: 22274419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the Number of Valid Observations and Diurnal Changes in Chl-a for GOCI: Highlights for Geostationary Ocean Color Missions.
    Zhao D; Feng L
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32549299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.
    Ahn JH; Park YJ; Kim W; Lee B
    Opt Express; 2016 Dec; 24(26):29659-29669. PubMed ID: 28059350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of GOCI ocean color products.
    Amin R; Lewis MD; Lawson A; Gould RW; Martinolich P; Li RR; Ladner S; Gallegos S
    Sensors (Basel); 2015 Oct; 15(10):25703-15. PubMed ID: 26473861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency and tidal period observations of suspended particulate matter in coastal waters by AHI/Himawari-8.
    Ding X; He X; Bai Y; Zhu Q; Gong F; Li H; Li J
    Opt Express; 2020 Sep; 28(19):27387-27404. PubMed ID: 32988034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing the Ocean Submesoscale with Enhanced-Color GOES-ABI Visible Band Data.
    Jolliff JK; Lewis MD; Ladner S; Crout RL
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coastal resilience surges as living shorelines reduce lateral erosion of salt marshes.
    Polk MA; Gittman RK; Smith CS; Eulie DO
    Integr Environ Assess Manag; 2022 Jan; 18(1):82-98. PubMed ID: 33991025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.
    Qiu Z; Zheng L; Zhou Y; Sun D; Wang S; Wu W
    Opt Express; 2015 Sep; 23(19):A1179-93. PubMed ID: 26406748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images.
    Qiu Z; Li Z; Bilal M; Wang S; Sun D; Chen Y
    Opt Express; 2018 Oct; 26(21):26810-26829. PubMed ID: 30469760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative Dynamics of Suspended Particulate Matter in the Changjiang Estuary from Geostationary Ocean Color Images: An Empirical, Regional Modeling Approach.
    Shang D; Xu H
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards principles and policy levers for advancing living shorelines.
    Jones SC; Pippin JS
    J Environ Manage; 2022 Mar; 311():114695. PubMed ID: 35276561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Matching Blunders of Multi-Source Remote Sensing Images via Graph Theory.
    Deng C; Yuan X; Deng L; Chen J
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32630824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for an ancient martian ocean in the topography of deformed shorelines.
    Perron JT; Mitrovica JX; Manga M; Matsuyama I; Richards MA
    Nature; 2007 Jun; 447(7146):840-3. PubMed ID: 17568743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.
    Duru U
    Environ Monit Assess; 2017 Aug; 189(8):385. PubMed ID: 28688069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.