These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Hwang J; Song MH; Park B; Nishimura S; Toyooka T; Wu JW; Takanishi Y; Ishikawa K; Takezoe H Nat Mater; 2005 May; 4(5):383-7. PubMed ID: 15852019 [TBL] [Abstract][Full Text] [Related]
45. Visible-frequency hyperbolic metasurface. High AA; Devlin RC; Dibos A; Polking M; Wild DS; Perczel J; de Leon NP; Lukin MD; Park H Nature; 2015 Jun; 522(7555):192-6. PubMed ID: 26062510 [TBL] [Abstract][Full Text] [Related]
46. Nanoscale modeling of electro-plasmonic tunable devices for modulators and metasurfaces. Riedel CA; Sun K; Muskens OL; de Groot CH Opt Express; 2017 May; 25(9):10031-10043. PubMed ID: 28468370 [TBL] [Abstract][Full Text] [Related]
47. Tunable/Reconfigurable Metasurfaces: Physics and Applications. He Q; Sun S; Zhou L Research (Wash D C); 2019; 2019():1849272. PubMed ID: 31549047 [TBL] [Abstract][Full Text] [Related]
48. Light-Matter Interactions in Hybrid Material Metasurfaces. Guan J; Park JE; Deng S; Tan MJH; Hu J; Odom TW Chem Rev; 2022 Oct; 122(19):15177-15203. PubMed ID: 35762982 [TBL] [Abstract][Full Text] [Related]
49. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic. Zhou C; Duan X; Liu N Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361 [TBL] [Abstract][Full Text] [Related]
51. Multifunctional sensors based on liquid crystals scaffolded in nematic polymer networks. Zhan X; Luo D; Yang KL RSC Adv; 2021 Nov; 11(61):38694-38702. PubMed ID: 35493255 [TBL] [Abstract][Full Text] [Related]
52. Plasmonic Color Switching by a Combination Device with Nematic Liquid Crystals and a Silver Nanocube Monolayer. Mizuno A; Shibata Y; Fujikake H; Ono A ACS Omega; 2023 Nov; 8(44):41579-41585. PubMed ID: 37970021 [TBL] [Abstract][Full Text] [Related]
53. Cholesteric liquid crystal-enabled electrically programmable metasurfaces for simultaneous near- and far-field displays. Wang J; Cai W; He H; Cen M; Liu J; Kong D; Luo D; Lu YQ; Liu YJ Nanoscale; 2022 Dec; 14(48):17921-17928. PubMed ID: 36458471 [TBL] [Abstract][Full Text] [Related]
54. Fluorination Improves the Electro-Optical Properties of Benzoxazole-Terminated Liquid Crystals in High Birefringence Liquid Crystal Mixtures: Experimental and Theoretical Investigations. Chen R; Mao Z; An Z; Chen X; Chen P Molecules; 2023 Mar; 28(7):. PubMed ID: 37049783 [TBL] [Abstract][Full Text] [Related]
55. Fast copolymer network liquid crystals for tunable birefringence colors. Jahanbakhsh F; Lorenz A Appl Opt; 2019 Jul; 58(20):5587-5594. PubMed ID: 31504031 [TBL] [Abstract][Full Text] [Related]
56. Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles. Liu Q; Yuan Y; Smalyukh II Nano Lett; 2014 Jul; 14(7):4071-7. PubMed ID: 24884975 [TBL] [Abstract][Full Text] [Related]
57. Nanotechnology-assisted liquid crystals-based biosensors: Towards fundamental to advanced applications. Prakash J; Parveen A; Mishra YK; Kaushik A Biosens Bioelectron; 2020 Nov; 168():112562. PubMed ID: 32919227 [TBL] [Abstract][Full Text] [Related]
58. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching. Zografopoulos DC; Beccherelli R Sci Rep; 2015 Aug; 5():13137. PubMed ID: 26272652 [TBL] [Abstract][Full Text] [Related]
59. Broadband optical switch based on liquid crystal dynamic scattering. Geis MW; Bos PJ; Liberman V; Rothschild M Opt Express; 2016 Jun; 24(13):13812-23. PubMed ID: 27410544 [TBL] [Abstract][Full Text] [Related]
60. Artificial Structural Color Pixels: A Review. Zhao Y; Zhao Y; Hu S; Lv J; Ying Y; Gervinskas G; Si G Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28805736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]