These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 30360623)
1. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures. Sarshar MA; Song D; Swarctz C; Lee J; Choi CH Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623 [TBL] [Abstract][Full Text] [Related]
2. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. Pan R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114 [TBL] [Abstract][Full Text] [Related]
3. Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests. Tian Z; Wang L; Zhu D; Chen C; Zhao H; Peng R; Zhang H; Fan P; Zhong M ACS Appl Mater Interfaces; 2023 Feb; 15(4):6013-6024. PubMed ID: 36656131 [TBL] [Abstract][Full Text] [Related]
4. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal Deicing Properties. Xie Z; Wang H; Geng Y; Li M; Deng Q; Tian Y; Chen R; Zhu X; Liao Q ACS Appl Mater Interfaces; 2021 Oct; 13(40):48308-48321. PubMed ID: 34587444 [TBL] [Abstract][Full Text] [Related]
5. Xuan S; Yin H; Li G; Zhang Z; Jiao Y; Liao Z; Li J; Liu S; Wang Y; Tang C; Wu W; Li G; Yin K ACS Nano; 2023 Nov; 17(21):21749-21760. PubMed ID: 37843015 [TBL] [Abstract][Full Text] [Related]
6. Icephobic/anti-icing properties of superhydrophobic surfaces. Huang W; Huang J; Guo Z; Liu W Adv Colloid Interface Sci; 2022 Jun; 304():102658. PubMed ID: 35381422 [TBL] [Abstract][Full Text] [Related]
7. Superhydrophobic SiC/CNTs Coatings with Photothermal Deicing and Passive Anti-Icing Properties. Jiang G; Chen L; Zhang S; Huang H ACS Appl Mater Interfaces; 2018 Oct; 10(42):36505-36511. PubMed ID: 30273481 [TBL] [Abstract][Full Text] [Related]
8. Robust and Superhydrophobic Polydimethylsiloxane/Ni@Ti Chen J; Chen X; Hao Z; Wu Z; Selim MS; Yu J; Huang Y ACS Appl Mater Interfaces; 2024 May; 16(20):26713-26732. PubMed ID: 38723291 [TBL] [Abstract][Full Text] [Related]
9. Verification of icephobic/anti-icing properties of a superhydrophobic surface. Wang Y; Xue J; Wang Q; Chen Q; Ding J ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106 [TBL] [Abstract][Full Text] [Related]
10. Multi-Scale Superhydrophobic Surface with Excellent Stability and Solar-Thermal Performance for Highly Efficient Anti-Icing and Deicing. Zhang F; Yan H; Chen M Small; 2024 Aug; 20(32):e2312226. PubMed ID: 38511539 [TBL] [Abstract][Full Text] [Related]
11. Micro-Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance. Chen C; Tian Z; Luo X; Jiang G; Hu X; Wang L; Peng R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35535994 [TBL] [Abstract][Full Text] [Related]
12. Passive Anti-Icing and Active Deicing Films. Wang T; Zheng Y; Raji AR; Li Y; Sikkema WK; Tour JM ACS Appl Mater Interfaces; 2016 Jun; 8(22):14169-73. PubMed ID: 27192099 [TBL] [Abstract][Full Text] [Related]
13. Superhydrophobic surfaces: are they really ice-repellent? Kulinich SA; Farhadi S; Nose K; Du XW Langmuir; 2011 Jan; 27(1):25-9. PubMed ID: 21141839 [TBL] [Abstract][Full Text] [Related]
14. Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion. Shen Y; Wu Y; Tao J; Zhu C; Chen H; Wu Z; Xie Y ACS Appl Mater Interfaces; 2019 Jan; 11(3):3590-3598. PubMed ID: 30589262 [TBL] [Abstract][Full Text] [Related]
15. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148 [TBL] [Abstract][Full Text] [Related]
16. Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus" and "Petal" Effect and Their Influence on Icing and Deicing Properties. Nine MJ; Tung TT; Alotaibi F; Tran DN; Losic D ACS Appl Mater Interfaces; 2017 Mar; 9(9):8393-8402. PubMed ID: 28192650 [TBL] [Abstract][Full Text] [Related]
17. How Micro-/Nanostructure Evolution Influences Dynamic Wetting and Natural Deicing Abilities of Bionic Lotus Surfaces. Yang Q; Zhu Z; Tan S; Luo Y; Luo Z Langmuir; 2020 Apr; 36(15):4005-4014. PubMed ID: 32233373 [TBL] [Abstract][Full Text] [Related]
18. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions. Emelyanenko AM; Boinovich LB; Bezdomnikov AA; Chulkova EV; Emelyanenko KA ACS Appl Mater Interfaces; 2017 Jul; 9(28):24210-24219. PubMed ID: 28657289 [TBL] [Abstract][Full Text] [Related]
19. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109 [TBL] [Abstract][Full Text] [Related]
20. Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell? Wang L; Jiang G; Tian Z; Chen C; Hu X; Peng R; Zhang H; Fan P; Zhong M Mater Horiz; 2023 Jan; 10(1):209-220. PubMed ID: 36349895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]