These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 30360743)
21. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Poff A; Koutnik AP; Egan KM; Sahebjam S; D'Agostino D; Kumar NB Semin Cancer Biol; 2019 Jun; 56():135-148. PubMed ID: 29294371 [TBL] [Abstract][Full Text] [Related]
22. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Yao Z; Xie F; Li M; Liang Z; Xu W; Yang J; Liu C; Li H; Zhou H; Qu LH Cell Death Dis; 2017 Feb; 8(2):e2633. PubMed ID: 28230866 [TBL] [Abstract][Full Text] [Related]
23. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. Wang G; Yu Y; Wang YZ; Wang JJ; Guan R; Sun Y; Shi F; Gao J; Fu XL J Cell Physiol; 2019 Aug; 234(10):17023-17049. PubMed ID: 30888065 [TBL] [Abstract][Full Text] [Related]
24. Glycolysis is essential for chemoresistance induced by transient receptor potential channel C5 in colorectal cancer. Wang T; Ning K; Sun X; Zhang C; Jin LF; Hua D BMC Cancer; 2018 Feb; 18(1):207. PubMed ID: 29463225 [TBL] [Abstract][Full Text] [Related]
25. 3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells. Chiasserini D; Davidescu M; Orvietani PL; Susta F; Macchioni L; Petricciuolo M; Castigli E; Roberti R; Binaglia L; Corazzi L J Proteomics; 2017 Jan; 152():329-338. PubMed ID: 27890797 [TBL] [Abstract][Full Text] [Related]
26. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Abdel-Wahab AF; Mahmoud W; Al-Harizy RM Pharmacol Res; 2019 Dec; 150():104511. PubMed ID: 31678210 [TBL] [Abstract][Full Text] [Related]
27. The novel hypoxia-inducible factor-1α inhibitor IDF-11774 regulates cancer metabolism, thereby suppressing tumor growth. Ban HS; Kim BK; Lee H; Kim HM; Harmalkar D; Nam M; Park SK; Lee K; Park JT; Kim I; Lee K; Hwang GS; Won M Cell Death Dis; 2017 Jun; 8(6):e2843. PubMed ID: 28569777 [TBL] [Abstract][Full Text] [Related]
28. Metabolic Pathways Regulating Colorectal Cancer: A Potential Therapeutic Approach. Zafari N; Velayati M; Damavandi S; Pourali G; Mobarhan MG; Nassiri M; Hassanian SM; Khazaei M; Ferns GA; Avan A Curr Pharm Des; 2022; 28(36):2995-3009. PubMed ID: 36154599 [TBL] [Abstract][Full Text] [Related]
29. STK25-induced inhibition of aerobic glycolysis via GOLPH3-mTOR pathway suppresses cell proliferation in colorectal cancer. Wu F; Gao P; Wu W; Wang Z; Yang J; Di J; Jiang B; Su X J Exp Clin Cancer Res; 2018 Jul; 37(1):144. PubMed ID: 29996891 [TBL] [Abstract][Full Text] [Related]
30. Glucose Addiction in Cancer Therapy: Advances and Drawbacks. Granja S; Pinheiro C; Reis RM; Martinho O; Baltazar F Curr Drug Metab; 2015; 16(3):221-42. PubMed ID: 26504932 [TBL] [Abstract][Full Text] [Related]
31. The promise of mTOR inhibitors in the treatment of colorectal cancer. Kim DD; Eng C Expert Opin Investig Drugs; 2012 Dec; 21(12):1775-88. PubMed ID: 22978346 [TBL] [Abstract][Full Text] [Related]
32. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Ni X; Lu CP; Xu GQ; Ma JJ Acta Pharmacol Sin; 2024 Aug; 45(8):1533-1555. PubMed ID: 38622288 [TBL] [Abstract][Full Text] [Related]
33. Targeting metabolic reprogramming in KRAS-driven cancers. Kawada K; Toda K; Sakai Y Int J Clin Oncol; 2017 Aug; 22(4):651-659. PubMed ID: 28647837 [TBL] [Abstract][Full Text] [Related]
35. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. Nosho K; Sukawa Y; Adachi Y; Ito M; Mitsuhashi K; Kurihara H; Kanno S; Yamamoto I; Ishigami K; Igarashi H; Maruyama R; Imai K; Yamamoto H; Shinomura Y World J Gastroenterol; 2016 Jan; 22(2):557-66. PubMed ID: 26811607 [TBL] [Abstract][Full Text] [Related]
36. Effects of β-caryophyllene on arginine ADP-ribosyltransferase 1-mediated regulation of glycolysis in colorectal cancer under high-glucose conditions. Zhou L; Zhan ML; Tang Y; Xiao M; Li M; Li QS; Yang L; Li X; Chen WW; Wang YL Int J Oncol; 2018 Oct; 53(4):1613-1624. PubMed ID: 30066849 [TBL] [Abstract][Full Text] [Related]
37. Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Yeh CS; Wang JY; Chung FY; Lee SC; Huang MY; Kuo CW; Yang MJ; Lin SR Oncol Rep; 2008 Jan; 19(1):81-91. PubMed ID: 18097579 [TBL] [Abstract][Full Text] [Related]
38. Biological role of metabolic reprogramming of cancer cells during epithelial‑mesenchymal transition (Review). Li M; Bu X; Cai B; Liang P; Li K; Qu X; Shen L Oncol Rep; 2019 Feb; 41(2):727-741. PubMed ID: 30483813 [TBL] [Abstract][Full Text] [Related]
39. Regulators of Glucose Metabolism in CD4 Palmer CS; Hussain T; Duette G; Weller TJ; Ostrowski M; Sada-Ovalle I; Crowe SM Int Rev Immunol; 2016 Nov; 35(6):477-488. PubMed ID: 26606199 [TBL] [Abstract][Full Text] [Related]
40. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. Courau T; Bonnereau J; Chicoteau J; Bottois H; Remark R; Assante Miranda L; Toubert A; Blery M; Aparicio T; Allez M; Le Bourhis L J Immunother Cancer; 2019 Mar; 7(1):74. PubMed ID: 30871626 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]