These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30360743)

  • 41. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA.
    Ooi AT; Gomperts BN
    Clin Cancer Res; 2015 Jun; 21(11):2440-4. PubMed ID: 25838393
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atractylenolide I inhibits colorectal cancer cell proliferation by affecting metabolism and stemness via AKT/mTOR signaling.
    Wang K; Huang W; Sang X; Wu X; Shan Q; Tang D; Xu X; Cao G
    Phytomedicine; 2020 Mar; 68():153191. PubMed ID: 32135457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Signal transduction pathways of the epidermal growth factor receptor in colorectal cancer and their inhibition by small molecules.
    Efferth T
    Curr Med Chem; 2012; 19(33):5735-44. PubMed ID: 23033949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. T cell metabolic fitness in antitumor immunity.
    Siska PJ; Rathmell JC
    Trends Immunol; 2015 Apr; 36(4):257-64. PubMed ID: 25773310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of glycolysis and lipogenesis by novel PI3K selective molecule represses tumor angiogenesis and decreases colorectal cancer growth.
    Hussain A; Qazi AK; Mupparapu N; Guru SK; Kumar A; Sharma PR; Singh SK; Singh P; Dar MJ; Bharate SB; Zargar MA; Ahmed QN; Bhushan S; Vishwakarma RA; Hamid A
    Cancer Lett; 2016 May; 374(2):250-60. PubMed ID: 26921131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response.
    Gill KS; Fernandes P; O'Donovan TR; McKenna SL; Doddakula KK; Power DG; Soden DM; Forde PF
    Biochim Biophys Acta; 2016 Aug; 1866(1):87-105. PubMed ID: 27373814
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-MEK-ERK kinase downstream regulator in metastatic colorectal cancer.
    Giordano G; Febbraro A; Tomaselli E; Sarnicola ML; Parcesepe P; Parente D; Forte N; Fabozzi A; Remo A; Bonetti A; Manfrin E; Ghasemi S; Ceccarelli M; Cerulo L; Bazzoni F; Pancione M
    J Exp Clin Cancer Res; 2015 Oct; 34():108. PubMed ID: 26427914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment.
    Xintaropoulou C; Ward C; Wise A; Queckborner S; Turnbull A; Michie CO; Williams ARW; Rye T; Gourley C; Langdon SP
    BMC Cancer; 2018 Jun; 18(1):636. PubMed ID: 29866066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting IL-8 in colorectal cancer.
    Ning Y; Lenz HJ
    Expert Opin Ther Targets; 2012 May; 16(5):491-7. PubMed ID: 22494524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.
    Chen XS; Li LY; Guan YD; Yang JM; Cheng Y
    Acta Pharmacol Sin; 2016 Aug; 37(8):1013-9. PubMed ID: 27374491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glycolysis inhibition for anticancer treatment.
    Pelicano H; Martin DS; Xu RH; Huang P
    Oncogene; 2006 Aug; 25(34):4633-46. PubMed ID: 16892078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells.
    Yu H; Zhang H; Dong M; Wu Z; Shen Z; Xie Y; Kong Z; Dai X; Xu B
    Int J Oncol; 2017 Jan; 50(1):161-172. PubMed ID: 27922662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signaling pathways in colorectal cancer implications for the target therapies.
    Song Y; Chen M; Wei Y; Ma X; Shi H
    Mol Biomed; 2024 Jun; 5(1):21. PubMed ID: 38844562
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anti-metastatic treatment in colorectal cancer: targeting signaling pathways.
    Lemos C; Sack U; Schmid F; Juneja M; Stein U
    Curr Pharm Des; 2013; 19(5):841-63. PubMed ID: 22973955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeted Therapy and Immunosuppression in the Tumor Microenvironment.
    Allegrezza MJ; Conejo-Garcia JR
    Trends Cancer; 2017 Jan; 3(1):19-27. PubMed ID: 28718424
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting cellular energy metabolism- mediated ferroptosis by small molecule compounds for colorectal cancer therapy.
    Wang G; Wang JJ; Xu XN; Shi F; Fu XL
    J Drug Target; 2022 Sep; 30(8):819-832. PubMed ID: 35481396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors.
    Mira A; Morello V; Céspedes MV; Perera T; Comoglio PM; Mangues R; Michieli P
    Oncotarget; 2017 Jun; 8(24):38193-38213. PubMed ID: 28445144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exclusive inhibition of PI3K/Akt/mTOR signaling is not sufficient to prevent PDGF-mediated effects on glycolysis and proliferation in colorectal cancer.
    Moench R; Grimmig T; Kannen V; Tripathi S; Faber M; Moll EM; Chandraker A; Lissner R; Germer CT; Waaga-Gasser AM; Gasser M
    Oncotarget; 2016 Oct; 7(42):68749-68767. PubMed ID: 27626684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomarkers and targeted therapeutics in colorectal cancer.
    Meguerditchian AN; Bullard Dunn K
    Surg Oncol Clin N Am; 2013 Oct; 22(4):841-55. PubMed ID: 24012402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.