BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30360937)

  • 1. Noninvasive real-time assessment of riboflavin consumption in standard and accelerated corneal crosslinking.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2019 Jan; 45(1):80-86. PubMed ID: 30360937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrastromal application of riboflavin for corneal crosslinking.
    Seiler TG; Fischinger I; Senfft T; Schmidinger G; Seiler T
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4261-5. PubMed ID: 24917136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between standard and transepithelial corneal crosslinking using a theranostic UV-A device.
    Lombardo G; Serrao S; Lombardo M
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):829-834. PubMed ID: 31900647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Optical Method to Assess Stromal Concentration of Riboflavin in Conventional and Accelerated UV-A Irradiation of the Human Cornea.
    Lombardo G; Micali NL; Villari V; Serrao S; Lombardo M
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):476-83. PubMed ID: 26868750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic Resistance of Corneas Crosslinked Using Riboflavin in Conjunction With Low Energy, High Energy, and Pulsed UVA Irradiation Modes.
    Aldahlawi NH; Hayes S; O'Brart DP; Akhbanbetova A; Littlechild SL; Meek KM
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):1547-52. PubMed ID: 27046119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of the riboflavin film in corneal collagen crosslinking.
    Wollensak G; Aurich H; Wirbelauer C; Sel S
    J Cataract Refract Surg; 2010 Jan; 36(1):114-20. PubMed ID: 20117714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of stromal riboflavin concentration-depth profile in nanotechnology-based transepithelial corneal crosslinking.
    Lombardo G; Micali NL; Villari V; Leone N; Serrao S; Rusciano D; Lombardo M
    J Cataract Refract Surg; 2017 May; 43(5):680-686. PubMed ID: 28602332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-light versus pulsed-light accelerated corneal crosslinking with ultraviolet-A and riboflavin.
    Zhu Y; Reinach PS; Zhu H; Li L; Yang F; Qu J; Chen W
    J Cataract Refract Surg; 2018 Mar; 44(3):382-389. PubMed ID: 29703291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Randomized Study of Collagen Cross-Linking With Conventional Versus Accelerated UVA Irradiation Using Riboflavin With Hydroxypropyl Methylcellulose: Two-Year Results.
    Hagem AM; Thorsrud A; Sandvik GF; Drolsum L
    Cornea; 2019 Feb; 38(2):203-209. PubMed ID: 30365412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Corneal Density After Accelerated Corneal Collagen Cross-linking With Different Irradiation Intensities and Energy Exposures: 1-Year Follow-up.
    Akkaya Turhan S; Toker E
    Cornea; 2017 Nov; 36(11):1331-1335. PubMed ID: 28872519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of riboflavin-UVA cross-linking and "flash-linking" using surface wave elastometry.
    Rocha KM; Ramos-Esteban JC; Qian Y; Herekar S; Krueger RR
    J Refract Surg; 2008 Sep; 24(7):S748-51. PubMed ID: 18811123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet A: Visible spectral absorbance of the human cornea after transepithelial soaking with dextran-enriched and dextran-free riboflavin 0.1% ophthalmic solutions.
    Lombardo M; Micali N; Villari V; Serrao S; Pucci G; Barberi R; Lombardo G
    J Cataract Refract Surg; 2015 Oct; 41(10):2283-90. PubMed ID: 26703306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of UVA Cytotoxicity for Human Endothelium in an Ex Vivo Corneal Cross-linking Experimental Setting.
    Mooren P; Gobin L; Bostan N; Wouters K; Zakaria N; Mathysen DG; Koppen C
    J Refract Surg; 2016 Jan; 32(1):41-6. PubMed ID: 26812713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances.
    Hammer A; Richoz O; Arba Mosquera S; Tabibian D; Hoogewoud F; Hafezi F
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):2881-4. PubMed ID: 24677109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal light backscattering after transepithelial corneal crosslinking using iontophoresis in donor human corneal tissue.
    Lombardo M; Serrao S; Carbone G; Lombardo G
    J Cataract Refract Surg; 2015 Mar; 41(3):635-43. PubMed ID: 25804584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation Between Multimodal Microscopy, Tissue Morphology, and Enzymatic Resistance in Riboflavin-UVA Cross-Linked Human Corneas.
    Laggner M; Pollreisz A; Schmidinger G; Byrne RA; Scheinecker C; Schmidt-Erfurth U; Chen YT
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3584-92. PubMed ID: 26047045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal stromal demarcation line after accelerated crosslinking using continuous and pulsed light.
    Moramarco A; Iovieno A; Sartori A; Fontana L
    J Cataract Refract Surg; 2015 Nov; 41(11):2546-51. PubMed ID: 26703505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservative treatment of keratoconus by riboflavin-uva-induced cross-linking of corneal collagen: qualitative investigation.
    Mazzotta C; Traversi C; Baiocchi S; Sergio P; Caporossi T; Caporossi A
    Eur J Ophthalmol; 2006; 16(4):530-5. PubMed ID: 16952090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Corneal Riboflavin Gradients Using Dextran and HPMC Solutions.
    Ehmke T; Seiler TG; Fischinger I; Ripken T; Heisterkamp A; Frueh BE
    J Refract Surg; 2016 Dec; 32(12):798-802. PubMed ID: 27930789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical efficacy of corneal cross-linking using hypoosmolar riboflavin solution.
    Wollensak G; Spörl E
    Eur J Ophthalmol; 2019 Sep; 29(5):474-481. PubMed ID: 30255714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.