BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30361486)

  • 1. A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects.
    Petersen A; Princ A; Korus G; Ellinghaus A; Leemhuis H; Herrera A; Klaumünzer A; Schreivogel S; Woloszyk A; Schmidt-Bleek K; Geissler S; Heschel I; Duda GN
    Nat Commun; 2018 Oct; 9(1):4430. PubMed ID: 30361486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration.
    Thompson EM; Matsiko A; Farrell E; Kelly DJ; O'Brien FJ
    J Tissue Eng Regen Med; 2015 Aug; 9(8):889-902. PubMed ID: 24916192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization.
    Gupte MJ; Swanson WB; Hu J; Jin X; Ma H; Zhang Z; Liu Z; Feng K; Feng G; Xiao G; Hatch N; Mishina Y; Ma PX
    Acta Biomater; 2018 Dec; 82():1-11. PubMed ID: 30321630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats.
    Boller LA; Shiels SM; Florian DC; Peck SH; Schoenecker JG; Duvall C; Wenke JC; Guelcher SA
    Acta Biomater; 2021 Aug; 130():485-496. PubMed ID: 34129957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth plate extracellular matrix-derived scaffolds for large bone defect healing.
    Cunniffe GM; Díaz-Payno PJ; Ramey JS; Mahon OR; Dunne A; Thompson EM; O'Brien FJ; Kelly DJ
    Eur Cell Mater; 2017 Feb; 33():130-142. PubMed ID: 28197989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.
    Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX
    Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone-Targeting Liposome-Encapsulated Salvianic Acid A Improves Nonunion Healing Through the Regulation of HDAC3-Mediated Endochondral Ossification.
    Zhou L; Wu H; Gao X; Zheng X; Chen H; Li H; Peng J; Liang W; Wang W; Qiu Z; Udduttula A; Wu K; Li L; Liu Y; Liu Y
    Drug Des Devel Ther; 2020; 14():3519-3533. PubMed ID: 32982168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo.
    Dennis SC; Berkland CJ; Bonewald LF; Detamore MS
    Tissue Eng Part B Rev; 2015 Jun; 21(3):247-66. PubMed ID: 25336144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal Immunomodulation Using Biomimetic Scaffold Promotes Endochondral Ossification-Mediated Bone Healing.
    Liu Y; Yang Z; Wang L; Sun L; Kim BYS; Jiang W; Yuan Y; Liu C
    Adv Sci (Weinh); 2021 Jun; 8(11):e2100143. PubMed ID: 34105266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decellularized Cartilage Extracellular Matrix Incorporated Silk Fibroin Hybrid Scaffolds for Endochondral Ossification Mediated Bone Regeneration.
    Jeyakumar V; Amraish N; Niculescu-Morsza E; Bauer C; Pahr D; Nehrer S
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation.
    Ortega N; Wang K; Ferrara N; Werb Z; Vu TH
    Dis Model Mech; 2010; 3(3-4):224-35. PubMed ID: 20142327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.
    Freeman FE; McNamara LM
    Tissue Eng Part B Rev; 2017 Apr; 23(2):128-141. PubMed ID: 27758156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
    Bernhard J; Ferguson J; Rieder B; Heimel P; Nau T; Tangl S; Redl H; Vunjak-Novakovic G
    Biomaterials; 2017 Sep; 139():202-212. PubMed ID: 28622604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting Endochondral Bone Repair Using Human Osteoarthritic Articular Chondrocytes.
    Bahney CS; Jacobs L; Tamai R; Hu D; Luan TF; Wang M; Reddy S; Park M; Limburg S; Kim HT; Marcucio R; Kuo AC
    Tissue Eng Part A; 2016 Mar; 22(5-6):427-35. PubMed ID: 26830207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an Engineered Hybrid Matrix for Bone Regeneration via Endochondral Ossification.
    Mikael PE; Golebiowska AA; Xin X; Rowe DW; Nukavarapu SP
    Ann Biomed Eng; 2020 Mar; 48(3):992-1005. PubMed ID: 31037444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ceria nanoparticles enhance endochondral ossification-based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs
    Li J; Kang F; Gong X; Bai Y; Dai J; Zhao C; Dou C; Cao Z; Liang M; Dong R; Jiang H; Yang X; Dong S
    FASEB J; 2019 May; 33(5):6378-6389. PubMed ID: 30776318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.