BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30361509)

  • 1. Identification of Novel Genes in Human Airway Epithelial Cells associated with Chronic Obstructive Pulmonary Disease (COPD) using Machine-Based Learning Algorithms.
    Mostafaei S; Kazemnejad A; Azimzadeh Jamalkandi S; Amirhashchi S; Donnelly SC; Armstrong ME; Doroudian M
    Sci Rep; 2018 Oct; 8(1):15775. PubMed ID: 30361509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel biomarker genes which distinguish between smokers and chronic obstructive pulmonary disease patients with machine learning approach.
    Matsumura K; Ito S
    BMC Pulm Med; 2020 Feb; 20(1):29. PubMed ID: 32013930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease.
    Heijink IH; de Bruin HG; van den Berge M; Bennink LJ; Brandenburg SM; Gosens R; van Oosterhout AJ; Postma DS
    Thorax; 2013 Aug; 68(8):709-16. PubMed ID: 23370438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A large lung gene expression study identifying IL1B as a novel player in airway inflammation in COPD airway epithelial cells.
    Yi G; Liang M; Li M; Fang X; Liu J; Lai Y; Chen J; Yao W; Feng X; Hu L; Lin C; Zhou X; Liu Z
    Inflamm Res; 2018 Jun; 67(6):539-551. PubMed ID: 29616282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression networks in COPD: microRNA and mRNA regulation.
    Ezzie ME; Crawford M; Cho JH; Orellana R; Zhang S; Gelinas R; Batte K; Yu L; Nuovo G; Galas D; Diaz P; Wang K; Nana-Sinkam SP
    Thorax; 2012 Feb; 67(2):122-31. PubMed ID: 21940491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platelet-activating factor receptor (PAFr) is upregulated in small airways and alveoli of smokers and COPD patients.
    Shukla SD; Muller HK; Latham R; Sohal SS; Walters EH
    Respirology; 2016 Apr; 21(3):504-10. PubMed ID: 26662379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biologic phenotyping of the human small airway epithelial response to cigarette smoking.
    Tilley AE; O'Connor TP; Hackett NR; Strulovici-Barel Y; Salit J; Amoroso N; Zhou XK; Raman T; Omberg L; Clark A; Mezey J; Crystal RG
    PLoS One; 2011; 6(7):e22798. PubMed ID: 21829517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular endothelial growth factor: an angiogenic factor reflecting airway inflammation in healthy smokers and in patients with bronchitis type of chronic obstructive pulmonary disease?
    Rovina N; Papapetropoulos A; Kollintza A; Michailidou M; Simoes DC; Roussos C; Gratziou C
    Respir Res; 2007 Jul; 8(1):53. PubMed ID: 17631682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression microarray public dataset reanalysis in chronic obstructive pulmonary disease.
    Rogers LRK; Verlinde M; Mias GI
    PLoS One; 2019; 14(11):e0224750. PubMed ID: 31730674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of C-reactive protein and serum amyloid A in different cell types in the lung tissue of chronic obstructive pulmonary disease patients.
    Calero C; Arellano E; Lopez-Villalobos JL; Sánchez-López V; Moreno-Mata N; López-Campos JL
    BMC Pulm Med; 2014 May; 14():95. PubMed ID: 24884805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease.
    Ning W; Li CJ; Kaminski N; Feghali-Bostwick CA; Alber SM; Di YP; Otterbein SL; Song R; Hayashi S; Zhou Z; Pinsky DJ; Watkins SC; Pilewski JM; Sciurba FC; Peters DG; Hogg JC; Choi AM
    Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14895-900. PubMed ID: 15469929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic copy number determines functional expression of {beta}-defensin 2 in airway epithelial cells and associates with chronic obstructive pulmonary disease.
    Janssens W; Nuytten H; Dupont LJ; Van Eldere J; Vermeire S; Lambrechts D; Nackaerts K; Decramer M; Cassiman JJ; Cuppens H
    Am J Respir Crit Care Med; 2010 Jul; 182(2):163-9. PubMed ID: 20378733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAseq analysis of bronchial epithelial cells to identify COPD-associated genes and SNPs.
    Yeo J; Morales DA; Chen T; Crawford EL; Zhang X; Blomquist TM; Levin AM; Massion PP; Arenberg DA; Midthun DE; Mazzone PJ; Nathan SD; Wainz RJ; Nana-Sinkam P; Willey PFS; Arend TJ; Padda K; Qiu S; Federov A; Hernandez DR; Hammersley JR; Yoon Y; Safi F; Khuder SA; Willey JC
    BMC Pulm Med; 2018 Mar; 18(1):42. PubMed ID: 29506519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smoking-Dependent Distal-to-Proximal Repatterning of the Adult Human Small Airway Epithelium.
    Yang J; Zuo WL; Fukui T; Chao I; Gomi K; Lee B; Staudt MR; Kaner RJ; Strulovici-Barel Y; Salit J; Crystal RG; Shaykhiev R
    Am J Respir Crit Care Med; 2017 Aug; 196(3):340-352. PubMed ID: 28345955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease.
    Liu Q; Li H; Wang Q; Zhang Y; Wang W; Dou S; Xiao W
    Respir Res; 2016 Nov; 17(1):159. PubMed ID: 27887617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-Learning Algorithm-Based Prediction of Diagnostic Gene Biomarkers Related to Immune Infiltration in Patients With Chronic Obstructive Pulmonary Disease.
    Zhang Y; Xia R; Lv M; Li Z; Jin L; Chen X; Han Y; Shi C; Jiang Y; Jin S
    Front Immunol; 2022; 13():740513. PubMed ID: 35350787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.
    Gao W; Yuan C; Zhang J; Li L; Yu L; Wiegman CH; Barnes PJ; Adcock IM; Huang M; Yao X
    Clin Sci (Lond); 2015 Dec; 129(12):1011-23. PubMed ID: 26201096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four SNPs and Systemic Level of FOXP3 in Smokers and Patients with Chronic Obstructive Pulmonary Disease.
    Chu S; Zhong X; Zhang J; Lai X; Xie J; Li Y
    COPD; 2016 Dec; 13(6):760-766. PubMed ID: 27310557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA Profiling Reveals a Role for MicroRNA-218-5p in the Pathogenesis of Chronic Obstructive Pulmonary Disease.
    Conickx G; Mestdagh P; Avila Cobos F; Verhamme FM; Maes T; Vanaudenaerde BM; Seys LJ; Lahousse L; Kim RY; Hsu AC; Wark PA; Hansbro PM; Joos GF; Vandesompele J; Bracke KR; Brusselle GG
    Am J Respir Crit Care Med; 2017 Jan; 195(1):43-56. PubMed ID: 27409149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease.
    Amaral JL; Lopes AJ; Faria AC; Melo PL
    Comput Methods Programs Biomed; 2015 Feb; 118(2):186-97. PubMed ID: 25435077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.