These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30361526)

  • 1. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae.
    Kim JE; Jang IS; Sung BH; Kim SC; Lee JY
    Sci Rep; 2018 Oct; 8(1):15820. PubMed ID: 30361526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in
    Lim SH; Baek JI; Jeon BM; Seo JW; Kim MS; Byun JY; Park SH; Kim SJ; Lee JY; Lee JH; Kim SC
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.
    Wei W; Wang P; Wei Y; Liu Q; Yang C; Zhao G; Yue J; Yan X; Zhou Z
    Mol Plant; 2015 Sep; 8(9):1412-24. PubMed ID: 26032089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae.
    Zhao F; Bai P; Liu T; Li D; Zhang X; Lu W; Yuan Y
    Biotechnol Bioeng; 2016 Aug; 113(8):1787-95. PubMed ID: 26757342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng.
    Han JY; Kim HJ; Kwon YS; Choi YE
    Plant Cell Physiol; 2011 Dec; 52(12):2062-73. PubMed ID: 22039120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng.
    Han JY; Hwang HS; Choi SW; Kim HJ; Choi YE
    Plant Cell Physiol; 2012 Sep; 53(9):1535-45. PubMed ID: 22875608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose.
    Gao X; Caiyin Q; Zhao F; Wu Y; Lu W
    J Agric Food Chem; 2018 Nov; 66(45):12009-12016. PubMed ID: 30350965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae.
    Zhu Y; Li J; Peng L; Meng L; Diao M; Jiang S; Li J; Xie N
    Microb Cell Fact; 2022 Nov; 21(1):230. PubMed ID: 36335407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically modified rice produces ginsenoside aglycone (protopanaxadiol).
    Han JY; Baek SH; Jo HJ; Yun DW; Choi YE
    Planta; 2019 Oct; 250(4):1103-1110. PubMed ID: 31168665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of compound K production in Saccharomyces cerevisiae by glycerol.
    Nan W; Zhao F; Zhang C; Ju H; Lu W
    Microb Cell Fact; 2020 Feb; 19(1):41. PubMed ID: 32075645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Producing aglycons of ginsenosides in bakers' yeast.
    Dai Z; Wang B; Liu Y; Shi M; Wang D; Zhang X; Liu T; Huang L; Zhang X
    Sci Rep; 2014 Jan; 4():3698. PubMed ID: 24424342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-level sustainable production of the characteristic protopanaxatriol-type saponins from Panax species in engineered Saccharomyces cerevisiae.
    Li X; Wang Y; Fan Z; Wang Y; Wang P; Yan X; Zhou Z
    Metab Eng; 2021 Jul; 66():87-97. PubMed ID: 33865981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides.
    Dai Z; Liu Y; Zhang X; Shi M; Wang B; Wang D; Huang L; Zhang X
    Metab Eng; 2013 Nov; 20():146-56. PubMed ID: 24126082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts.
    Wang P; Wei Y; Fan Y; Liu Q; Wei W; Yang C; Zhang L; Zhao G; Yue J; Yan X; Zhou Z
    Metab Eng; 2015 May; 29():97-105. PubMed ID: 25769286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica.
    Wu Y; Xu S; Gao X; Li M; Li D; Lu W
    Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of a bioactive unnatural ginsenoside by metabolically engineered yeasts based on a new UDP-glycosyltransferase from Bacillus subtilis.
    Liang H; Hu Z; Zhang T; Gong T; Chen J; Zhu P; Li Y; Yang J
    Metab Eng; 2017 Nov; 44():60-69. PubMed ID: 28778764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Saccharomyces cerevisiae reactive oxygen species and ethanol stress tolerance for high-level production of protopanoxadiol.
    Zhao F; Du Y; Bai P; Liu J; Lu W; Yuan Y
    Bioresour Technol; 2017 Mar; 227():308-316. PubMed ID: 28040652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of cell factories for high production of ginsenoside Rh_2 in Saccharomyces cerevisiae].
    Shi YS; Wang D; Li RS; Zhang XL; Dai ZB
    Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(3):651-658. PubMed ID: 35178947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic preparation of 20(S, R)-protopanaxadiol by transformation of 20(S, R)-Rg3 from black ginseng.
    Liu L; Zhu XM; Wang QJ; Zhang DL; Fang ZM; Wang CY; Wang Z; Sun BS; Wu H; Sung CK
    Phytochemistry; 2010 Sep; 71(13):1514-20. PubMed ID: 20576280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of the dammarene sapogenin (protopanaxadiol) in transgenic tobacco plants and cultured cells by heterologous expression of PgDDS and CYP716A47.
    Chun JH; Adhikari PB; Park SB; Han JY; Choi YE
    Plant Cell Rep; 2015 Sep; 34(9):1551-60. PubMed ID: 25981048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.