BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30361563)

  • 1. Improved methods for marking active neuron populations.
    Moeyaert B; Holt G; Madangopal R; Perez-Alvarez A; Fearey BC; Trojanowski NF; Ledderose J; Zolnik TA; Das A; Patel D; Brown TA; Sachdev RNS; Eickholt BJ; Larkum ME; Turrigiano GG; Dana H; Gee CE; Oertner TG; Hope BT; Schreiter ER
    Nat Commun; 2018 Oct; 9(1):4440. PubMed ID: 30361563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced detection sensitivity of neuronal activity patterns using CaMPARI1 vs. CaMPARI2.
    Das A; Margevicius D; Borovicka J; Icardi J; Patel D; Paquet ME; Dana H
    Front Neurosci; 2022; 16():1055554. PubMed ID: 36704000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.
    Zolnik TA; Sha F; Johenning FW; Schreiter ER; Looger LL; Larkum ME; Sachdev RN
    J Physiol; 2017 Mar; 595(5):1465-1477. PubMed ID: 27861906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Photoconvertible Fluorescent Probe, CaMPARI, Labels Active Neurons in Freely-Moving Intact Adult Fruit Flies.
    Edwards KA; Hoppa MB; Bosco G
    Front Neural Circuits; 2020; 14():22. PubMed ID: 32457580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erasable labeling of neuronal activity using a reversible calcium marker.
    Sha F; Abdelfattah AS; Patel R; Schreiter ER
    Elife; 2020 Sep; 9():. PubMed ID: 32931424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Induced Calcium-Dependent Gene Activation and Labeling of Active Neurons Using CaMPARI and Cal-Light.
    Ebner C; Ledderose J; Zolnik TA; Dominiak SE; Turko P; Papoutsi A; Poirazi P; Eickholt BJ; Vida I; Larkum ME; Sachdev RNS
    Front Synaptic Neurosci; 2019; 11():16. PubMed ID: 31178713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.
    Fosque BF; Sun Y; Dana H; Yang CT; Ohyama T; Tadross MR; Patel R; Zlatic M; Kim DS; Ahrens MB; Jayaraman V; Looger LL; Schreiter ER
    Science; 2015 Feb; 347(6223):755-60. PubMed ID: 25678659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein.
    Ando R; Hama H; Yamamoto-Hino M; Mizuno H; Miyawaki A
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12651-6. PubMed ID: 12271129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms.
    Pennacchietti F; Alvelid J; Morales RA; Damenti M; Ollech D; Oliinyk OS; Shcherbakova DM; Villablanca EJ; Verkhusha VV; Testa I
    Nat Commun; 2023 Dec; 14(1):8402. PubMed ID: 38114484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing CaMPARI as new approach methodology for evaluating neurotoxicity.
    Biechele-Speziale D; Camarillo M; Martin NR; Biechele-Speziale J; Lein PJ; Plavicki JS
    Neurotoxicology; 2023 Jul; 97():109-119. PubMed ID: 37244562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange.
    Subach OM; Patterson GH; Ting LM; Wang Y; Condeelis JS; Verkhusha VV
    Nat Methods; 2011 Jul; 8(9):771-7. PubMed ID: 21804536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging.
    Berlin S; Carroll EC; Newman ZL; Okada HO; Quinn CM; Kallman B; Rockwell NC; Martin SS; Lagarias JC; Isacoff EY
    Nat Methods; 2015 Sep; 12(9):852-8. PubMed ID: 26167640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoconversion for tracking the dynamics of cell movement in Xenopus laevis embryos.
    Chernet BT; Adams DS; Levin M
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):683-90. PubMed ID: 22661444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring cellular movement in vivo with photoconvertible fluorescence protein "Kaede" transgenic mice.
    Tomura M; Yoshida N; Tanaka J; Karasawa S; Miwa Y; Miyawaki A; Kanagawa O
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10871-6. PubMed ID: 18663225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically encoded calcium indicator with NTnC-like design and enhanced fluorescence contrast and kinetics.
    Doronin DA; Barykina NV; Subach OM; Sotskov VP; Plusnin VV; Ivleva OA; Isaakova EA; Varizhuk AM; Pozmogova GE; Malyshev AY; Smirnov IV; Piatkevich KD; Anokhin KV; Enikolopov GN; Subach FV
    BMC Biotechnol; 2018 Feb; 18(1):10. PubMed ID: 29439686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicolor RGB Marking Allows Morphometric and Functional Analysis of Hippocampal Granule Neurons at the Single-Cell Level.
    Gomez-Nicola D; Riecken K; Perry VH; Fehse B
    Hum Gene Ther; 2015 Jun; 26(6):332-3. PubMed ID: 25894663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the photoconversion on reaction of the fluorescent protein Kaede on the single-molecule level.
    Dittrich PS; Schäfer SP; Schwille P
    Biophys J; 2005 Nov; 89(5):3446-55. PubMed ID: 16055537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos.
    Nowotschin S; Hadjantonakis AK
    BMC Dev Biol; 2009 Sep; 9():49. PubMed ID: 19740427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoconversion in orange and red fluorescent proteins.
    Kremers GJ; Hazelwood KL; Murphy CS; Davidson MW; Piston DW
    Nat Methods; 2009 May; 6(5):355-8. PubMed ID: 19363494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell tracking using a photoconvertible fluorescent protein.
    Hatta K; Tsujii H; Omura T
    Nat Protoc; 2006; 1(2):960-7. PubMed ID: 17406330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.