These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 30361639)
1. Completely stopping microwaves with extremely enhanced magnetic fields. Shen Q; Hong L; Deng X; Shen L Sci Rep; 2018 Oct; 8(1):15811. PubMed ID: 30361639 [TBL] [Abstract][Full Text] [Related]
2. Stopping terahertz radiation without backscattering over a broad band. Shen L; Zheng X; Deng X Opt Express; 2015 May; 23(9):11790-8. PubMed ID: 25969270 [TBL] [Abstract][Full Text] [Related]
3. Complete trapping of electromagnetic radiation using surface magnetoplasmons. Shen L; Wang Z; Deng X; Wu JJ; Yang TJ Opt Lett; 2015 Apr; 40(8):1853-6. PubMed ID: 25872091 [TBL] [Abstract][Full Text] [Related]
4. Propagation characteristics and guiding of a high-power microwave in plasma waveguide. Ito H; Rajyaguru C; Yugami N; Nishida Y; Hosoya T Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066406. PubMed ID: 15244744 [TBL] [Abstract][Full Text] [Related]
5. Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies. Shen L; You Y; Wang Z; Deng X Opt Express; 2015 Jan; 23(2):950-62. PubMed ID: 25835854 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic ridge waveguides with deep-subwavelength outside-field confinements. Sun C; Rong K; Wang Y; Li H; Gong Q; Chen J Nanotechnology; 2016 Feb; 27(6):065501. PubMed ID: 26762694 [TBL] [Abstract][Full Text] [Related]
7. Microwave magnetoelectric fields and their role in the matter-field interaction. Kamenetskii EO; Joffe R; Shavit R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023201. PubMed ID: 23496631 [TBL] [Abstract][Full Text] [Related]
8. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Yu Z; Veronis G; Wang Z; Fan S Phys Rev Lett; 2008 Jan; 100(2):023902. PubMed ID: 18232868 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the effects of continuous-wave, pulse- and amplitude-modulated microwaves on single excitable cells of Chara corallina. Liu LM; Garber F; Cleary SF Bioelectromagnetics; 1982; 3(2):203-12. PubMed ID: 7126272 [TBL] [Abstract][Full Text] [Related]
10. Nonreciprocal waveguiding structures for THz region based on InSb. Kwiecien P; Richter I; Kuzmiak V; Čtyroký J J Opt Soc Am A Opt Image Sci Vis; 2017 Jun; 34(6):892-903. PubMed ID: 29036072 [TBL] [Abstract][Full Text] [Related]
11. Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons. Hu B; Wang QJ; Zhang Y Opt Lett; 2012 Jun; 37(11):1895-7. PubMed ID: 22660065 [TBL] [Abstract][Full Text] [Related]
12. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization. Sidabras JW; Strangeway RA; Mett RR; Anderson JR; Mainali L; Hyde JS Rev Sci Instrum; 2016 Mar; 87(3):034704. PubMed ID: 27036800 [TBL] [Abstract][Full Text] [Related]
13. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses. Tokita S; Sakabe S; Nagashima T; Hashida M; Inoue S Sci Rep; 2015 Feb; 5():8268. PubMed ID: 25652694 [TBL] [Abstract][Full Text] [Related]
14. Manipulating electromagnetic wave propagating non-reciprocally by a chain of ferrite rods. Ju C; Wu RX; Li Z; Poo Y; Liu SY; Lin ZF Opt Express; 2017 Sep; 25(18):22096-22103. PubMed ID: 29041498 [TBL] [Abstract][Full Text] [Related]
15. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide. Yang C; Wu Q; Xu J; Nelson KA; Werley CA Opt Express; 2010 Dec; 18(25):26351-64. PubMed ID: 21164986 [TBL] [Abstract][Full Text] [Related]
16. Near-field characterization of propagating optical modes in photonic crystal waveguides. Abashin M; Tortora P; Märki I; Levy U; Nakagawa W; Vaccaro L; Herzig H; Fainman Y Opt Express; 2006 Feb; 14(4):1643-57. PubMed ID: 19503492 [TBL] [Abstract][Full Text] [Related]
17. Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement. Ma Y; Farrell G; Semenova Y; Wu Q Opt Lett; 2014 Feb; 39(4):973-6. PubMed ID: 24562255 [TBL] [Abstract][Full Text] [Related]
18. Surface enhancement of THz wave by coupling a subwavelength LiNbO Zhang Q; Qi J; Wu Q; Lu Y; Zhao W; Wang R; Pan C; Wang S; Xu J Sci Rep; 2017 Dec; 7(1):17602. PubMed ID: 29242537 [TBL] [Abstract][Full Text] [Related]
19. Effect of Waveguide Aperture and Distance on Microwave Treatment Performance in Rock Excavation. Chen F; Wu Z; Zhang Z Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850527 [TBL] [Abstract][Full Text] [Related]
20. Propagation characteristics of an extremely anisotropic metamaterial loaded helical guide. Sharma DK; Pathak SK Opt Express; 2016 Dec; 24(26):29521-29536. PubMed ID: 28059339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]