BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30361722)

  • 1. Identifying macrophage enrichment in atherosclerotic plaques by targeting dual-modal US imaging/MRI based on biodegradable Fe-doped hollow silica nanospheres conjugated with anti-CD68 antibody.
    Ji R; Li X; Zhou C; Tian Q; Li C; Xia S; Wang R; Feng Y; Zhan W
    Nanoscale; 2018 Nov; 10(43):20246-20255. PubMed ID: 30361722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging monocytes with iron oxide nanoparticles targeted towards the monocyte integrin MAC-1 (CD11b/CD18) does not result in improved atherosclerotic plaque detection by in vivo MRI.
    von zur Muhlen C; Fink-Petri A; Salaklang J; Paul D; Neudorfer I; Berti V; Merkle A; Peter K; Bode C; von Elverfeldt D
    Contrast Media Mol Imaging; 2010; 5(5):268-75. PubMed ID: 20973112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles.
    Shen ZT; Zheng S; Gounis MJ; Sigalov AB
    PLoS One; 2015; 10(11):e0143453. PubMed ID: 26569115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI.
    Tarin C; Carril M; Martin-Ventura JL; Markuerkiaga I; Padro D; Llamas-Granda P; Moreno JA; García I; Genicio N; Plaza-Garcia S; Blanco-Colio LM; Penades S; Egido J
    Sci Rep; 2015 Nov; 5():17135. PubMed ID: 26616677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages.
    Cheng D; Li X; Zhang C; Tan H; Wang C; Pang L; Shi H
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2847-55. PubMed ID: 25569777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI.
    Amirbekian V; Lipinski MJ; Briley-Saebo KC; Amirbekian S; Aguinaldo JG; Weinreb DB; Vucic E; Frias JC; Hyafil F; Mani V; Fisher EA; Fayad ZA
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):961-6. PubMed ID: 17215360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques.
    Wu M; Li X; Guo Q; Li J; Xu G; Li G; Wang J; Zhang X
    Nanomedicine; 2021 Feb; 32():102330. PubMed ID: 33171287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent.
    Bhavane R; Badea C; Ghaghada KB; Clark D; Vela D; Moturu A; Annapragada A; Johnson GA; Willerson JT; Annapragada A
    Circ Cardiovasc Imaging; 2013 Mar; 6(2):285-94. PubMed ID: 23349231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folate receptor–targeted single-photon emission computed tomography/computed tomography to detect activated macrophages in atherosclerosis: can it distinguish vulnerable from stable atherosclerotic plaques?
    Winkel LC; Groen HC; van Thiel BS; Müller C; van der Steen AF; Wentzel JJ; de Jong M; Van der Heiden K
    Mol Imaging; 2014; 13():. PubMed ID: 24757762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression.
    Chen W; Cormode DP; Vengrenyuk Y; Herranz B; Feig JE; Klink A; Mulder WJ; Fisher EA; Fayad ZA
    JACC Cardiovasc Imaging; 2013 Mar; 6(3):373-84. PubMed ID: 23433925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes.
    Briley-Saebo KC; Shaw PX; Mulder WJ; Choi SH; Vucic E; Aguinaldo JG; Witztum JL; Fuster V; Tsimikas S; Fayad ZA
    Circulation; 2008 Jun; 117(25):3206-15. PubMed ID: 18541740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives.
    Burtea C; Ballet S; Laurent S; Rousseaux O; Dencausse A; Gonzalez W; Port M; Corot C; Vander Elst L; Muller RN
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):e36-48. PubMed ID: 22516067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis.
    Chen W; Vucic E; Leupold E; Mulder WJ; Cormode DP; Briley-Saebo KC; Barazza A; Fisher EA; Dathe M; Fayad ZA
    Contrast Media Mol Imaging; 2008; 3(6):233-42. PubMed ID: 19072768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of atherosclerosis in apoliprotein e knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages.
    Ayala-López W; Xia W; Varghese B; Low PS
    J Nucl Med; 2010 May; 51(5):768-74. PubMed ID: 20395331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques.
    Ariza de Schellenberger A; Poller WC; Stangl V; Landmesser U; Schellenberger E
    Int J Nanomedicine; 2018; 13():7905-7913. PubMed ID: 30538467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthogonal F-18 labeling.
    Jeong HJ; Yoo RJ; Kim JK; Kim MH; Park SH; Kim H; Lim JW; Do SH; Lee KC; Lee YJ; Kim DW
    Biomaterials; 2019 Apr; 199():32-39. PubMed ID: 30735894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Folate-Conjugated Dual-Modal Fluorescent Magnetic Resonance Imaging Contrast Agent that Targets Activated Macrophages In Vitro and In Vivo.
    Yao Y; Li B; Yin C; Cong F; Ma GS; Liu NF; Fan QL; Teng GJ
    J Biomed Nanotechnol; 2016 Dec; 12(12):2161-71. PubMed ID: 29372808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human antibody against C domain of tenascin-C visualizes murine atherosclerotic plaques ex vivo.
    von Lukowicz T; Silacci M; Wyss MT; Trachsel E; Lohmann C; Buck A; Lüscher TF; Neri D; Matter CM
    J Nucl Med; 2007 Apr; 48(4):582-7. PubMed ID: 17401095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo MRI detection of atherosclerosis in ApoE-deficient mice by using tenascin-C-targeted USPIO.
    Li Y; Liu J; Huang JW; Song JC; Ma ZL; Shi HB
    Acta Radiol; 2018 Dec; 59(12):1431-1437. PubMed ID: 29566551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging.
    Ouimet T; Lancelot E; Hyafil F; Rienzo M; Deux F; Lemaître M; Duquesnoy S; Garot J; Roques BP; Michel JB; Corot C; Ballet S
    Mol Pharm; 2012 Apr; 9(4):850-61. PubMed ID: 22352457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.