These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30361914)

  • 1. Retention-time prediction in comprehensive two-dimensional gas chromatography to aid identification of unknown contaminants.
    Veenaas C; Linusson A; Haglund P
    Anal Bioanal Chem; 2018 Dec; 410(30):7931-7941. PubMed ID: 30361914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.
    D'Archivio AA; Incani A; Ruggieri F
    Anal Bioanal Chem; 2011 Jan; 399(2):903-13. PubMed ID: 20972553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction Models of Retention Indices for Increased Confidence in Structural Elucidation during Complex Matrix Analysis: Application to Gas Chromatography Coupled with High-Resolution Mass Spectrometry.
    Dossin E; Martin E; Diana P; Castellon A; Monge A; Pospisil P; Bentley M; Guy PA
    Anal Chem; 2016 Aug; 88(15):7539-47. PubMed ID: 27403731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of three liquid chromatography (LC) retention time prediction models.
    McEachran AD; Mansouri K; Newton SR; Beverly BEJ; Sobus JR; Williams AJ
    Talanta; 2018 May; 182():371-379. PubMed ID: 29501166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model.
    Wen Y; Talebi M; Amos RIJ; Szucs R; Dolan JW; Pohl CA; Haddad PR
    J Chromatogr A; 2018 Mar; 1541():1-11. PubMed ID: 29454529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols.
    Veenaas C; Haglund P
    J Chromatogr A; 2018 Feb; 1536():67-74. PubMed ID: 28882343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-retention relationships for pyridinium-based ionic liquids used as gas chromatographic stationary phases: convenient software and assessment of reliability of the results.
    Sholokhova AY; Matyushin DD; Shashkov MV
    J Chromatogr A; 2024 Jul; 1730():465144. PubMed ID: 38996513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regression algorithm for calculating second-dimension retention indices in comprehensive two-dimensional gas chromatography.
    Mazur DM; Zenkevich IG; Artaev VB; Polyakova OV; Lebedev AT
    J Chromatogr A; 2018 Sep; 1569():178-185. PubMed ID: 30098732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a quantitative structure retention relationship approach for the prediction of the two-dimensional gas chromatography retention times of polycyclic aromatic sulfur heterocycle compounds.
    Gieleciak R; Hager D; Heshka NE
    J Chromatogr A; 2016 Mar; 1437():191-202. PubMed ID: 26879453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting percent composition of blends of biodiesel and conventional diesel using gas chromatography-mass spectrometry, comprehensive two-dimensional gas chromatography-mass spectrometry, and partial least squares analysis.
    Pierce KM; Schale SP
    Talanta; 2011 Jan; 83(4):1254-9. PubMed ID: 21215861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of gas chromatography/electron capture detector retention times of chlorinated pesticides, herbicides, and organohalides by multivariate chemometrics methods.
    Ghasemi J; Asadpour S; Abdolmaleki A
    Anal Chim Acta; 2007 Apr; 588(2):200-6. PubMed ID: 17386811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance comparison of partial least squares-related variable selection methods for quantitative structure retention relationships modelling of retention times in reversed-phase liquid chromatography.
    Talebi M; Schuster G; Shellie RA; Szucs R; Haddad PR
    J Chromatogr A; 2015 Dec; 1424():69-76. PubMed ID: 26592563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative multiple quantitative structure-retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques.
    Qin LT; Liu SS; Liu HL; Tong J
    J Chromatogr A; 2009 Jul; 1216(27):5302-12. PubMed ID: 19486989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography.
    Park SH; Haddad PR; Amos RIJ; Talebi M; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Oct; 1520():107-116. PubMed ID: 28916393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention Index Prediction Using Quantitative Structure-Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics.
    Wen Y; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA; Haddad PR
    Anal Chem; 2018 Aug; 90(15):9434-9440. PubMed ID: 29952550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention prediction using quantitative structure-retention relationships combined with the hydrophobic subtraction model in reversed-phase liquid chromatography.
    Wen Y; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA; Haddad PR
    Electrophoresis; 2019 Sep; 40(18-19):2415-2419. PubMed ID: 30953374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of dual-filtering to create training sets leading to improved accuracy in quantitative structure-retention relationships modelling for hydrophilic interaction liquid chromatographic systems.
    Taraji M; Haddad PR; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Jul; 1507():53-62. PubMed ID: 28587779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of liquid chromatographic retention for differentiation of structural isomers.
    Tyrkkö E; Pelander A; Ojanperä I
    Anal Chim Acta; 2012 Mar; 720():142-8. PubMed ID: 22365132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.