These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30362004)

  • 1. Quantitative Analysis with Droplet Digital PCR.
    Mehle N; Dreo T
    Methods Mol Biol; 2019; 1875():171-186. PubMed ID: 30362004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time PCR detection system for the bois noir and flavescence dorée phytoplasmas and quantification of the target DNA.
    Mehle N; Prezelj N; Hren M; Boben J; Gruden K; Ravnikar M; Dermastia M
    Methods Mol Biol; 2013; 938():253-68. PubMed ID: 22987422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new TaqMan method for the identification of phytoplasmas associated with grapevine yellows by real-time PCR assay.
    Angelini E; Luca Bianchi G; Filippin L; Morassutti C; Borgo M
    J Microbiol Methods; 2007 Mar; 68(3):613-22. PubMed ID: 17222474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse transcription-PCR for phytoplasma detection utilizing crude sap extractions.
    Margaria P; Palmano S
    Methods Mol Biol; 2013; 938():283-9. PubMed ID: 22987424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosis of Phytoplasmas by Real-Time PCR Using Locked Nucleic Acid (LNA) Probes.
    Palmano S; Mulholland V; Kenyon D; Saddler GS; Jeffries C
    Methods Mol Biol; 2015; 1302():113-22. PubMed ID: 25981250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet digital PCR for absolute quantification of pathogens.
    Gutiérrez-Aguirre I; Rački N; Dreo T; Ravnikar M
    Methods Mol Biol; 2015; 1302():331-47. PubMed ID: 25981265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grapevine yellows in Northern Italy: molecular identification of Flavescence dorée phytoplasma strains and of Bois Noir phytoplasmas.
    Botti S; Bertaccini A
    J Appl Microbiol; 2007 Dec; 103(6):2325-30. PubMed ID: 18045417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of the Vitis vinifera L. cv. 'Nebbiolo' proteome to Flavescence dorée phytoplasma infection.
    Margaria P; Palmano S
    Proteomics; 2011 Jan; 11(2):212-24. PubMed ID: 21204249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Seq profile of flavescence dorée phytoplasma in grapevine.
    Abbà S; Galetto L; Carle P; Carrère S; Delledonne M; Foissac X; Palmano S; Veratti F; Marzachì C
    BMC Genomics; 2014 Dec; 15(1):1088. PubMed ID: 25495145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification.
    Ratti C; Minguzzi S; Turina M
    Methods Mol Biol; 2019; 1875():159-169. PubMed ID: 30362003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquisition of Flavescence Dorée Phytoplasma by Scaphoideus titanus Ball from Different Grapevine Varieties.
    Galetto L; Miliordos DE; Pegoraro M; Sacco D; Veratti F; Marzachì C; Bosco D
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27649162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for the Definition of a Multi-Spectral Sensor for Specific Foliar Disease Detection: Case of "Flavescence Dorée".
    Al-Saddik H; Laybros A; Simon JC; Cointault F
    Methods Mol Biol; 2019; 1875():213-238. PubMed ID: 30362007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time PCR for universal phytoplasma detection and quantification.
    Christensen NM; Nyskjold H; Nicolaisen M
    Methods Mol Biol; 2013; 938():245-52. PubMed ID: 22987421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EvaGreen real-time PCR protocol for specific 'Candidatus Phytoplasma mali' detection and quantification in insects.
    Monti M; Martini M; Tedeschi R
    Mol Cell Probes; 2013; 27(3-4):129-36. PubMed ID: 23474195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duplex TaqMan Real-Time PCR for Rapid Quantitative Analysis of a Phytoplasma in Its Host Plant without External Standard Curves.
    Baric S
    Methods Mol Biol; 2019; 1875():131-141. PubMed ID: 30362000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic and transcript analysis of the flavonoid pathway in diseased and recovered Nebbiolo and Barbera grapevines (Vitis vinifera L.) following infection by Flavescence dorée phytoplasma.
    Margaria P; Ferrandino A; Caciagli P; Kedrina O; Schubert A; Palmano S
    Plant Cell Environ; 2014 Sep; 37(9):2183-200. PubMed ID: 24689527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time PCR Protocol for Phytoplasma Detection and Quantification.
    Abou-Jawdah Y; Aknadibossian V; Jawhari M; Tawidian P; Abrahamian P
    Methods Mol Biol; 2019; 1875():117-130. PubMed ID: 30361999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of different complex media for phytoplasma isolation and growth.
    Contaldo N; Satta E; Zambon Y; Paltrinieri S; Bertaccini A
    J Microbiol Methods; 2016 Aug; 127():105-110. PubMed ID: 27262375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and rapid protocol of crude DNA extraction from apple trees for PCR and real-time PCR detection of 'Candidatus Phytoplasma mali'.
    Aldaghi M; Massart S; Dutrecq O; Bertaccini A; Jijakli MH; Lepoivre P
    J Virol Methods; 2009 Mar; 156(1-2):96-101. PubMed ID: 19010357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time PCR for specific detection of three phytoplasmas from the apple proliferation group.
    Mehle N; Nikolić P; Gruden K; Ravnikar M; Dermastia M
    Methods Mol Biol; 2013; 938():269-81. PubMed ID: 22987423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.