These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 30362037)
1. Modeling fully coupled hydraulic-mechanical-chemical processes in a natural clay liner under mechanical and chemico-osmotic consolidation. Zhang Z; Masum SA; Thomas HR; Han L Environ Sci Pollut Res Int; 2018 Dec; 25(36):36173-36183. PubMed ID: 30362037 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional fully coupled hydro-mechanical-chemical model for solute transport under mechanical and osmotic loading conditions. Masum SA; Zhang Z; Tian G; Sultana M Environ Sci Pollut Res Int; 2023 Jan; 30(3):5983-6000. PubMed ID: 35986848 [TBL] [Abstract][Full Text] [Related]
3. Study on transport and transformation of contaminant through layered soil with large deformation. Yu C; Liu J; Ma J; Yu X Environ Sci Pollut Res Int; 2018 May; 25(13):12764-12779. PubMed ID: 29470756 [TBL] [Abstract][Full Text] [Related]
4. Explicit and implicit coupling during solute transport through clay membrane barriers. Malusis MA; Shackelford CD J Contam Hydrol; 2004 Aug; 72(1-4):259-85. PubMed ID: 15240176 [TBL] [Abstract][Full Text] [Related]
5. Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics. Malusis MA; Shackelford CD; Maneval JE J Contam Hydrol; 2012 Sep; 138-139():40-59. PubMed ID: 22797191 [TBL] [Abstract][Full Text] [Related]
6. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport. Soler JM J Contam Hydrol; 2001 Dec; 53(1-2):63-84. PubMed ID: 11816995 [TBL] [Abstract][Full Text] [Related]
7. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants. Hammel HT; Schlegel WM Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460 [TBL] [Abstract][Full Text] [Related]
8. Membrane behavior of clay considering the effect of fixed charges. Song Z; Wei C; Cai G; Zhang Z; Du X Sci Total Environ; 2023 Jan; 856(Pt 2):159196. PubMed ID: 36198350 [TBL] [Abstract][Full Text] [Related]
9. Coupling effects during steady-state solute diffusion through a semipermeable clay membrane. Malusis MA; Shackelford CD Environ Sci Technol; 2002 Mar; 36(6):1312-9. PubMed ID: 11944686 [TBL] [Abstract][Full Text] [Related]
10. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation. Guan C; Xie HJ; Wang YZ; Chen YM; Jiang YS; Tang XW Sci Total Environ; 2014 Jan; 466-467():221-31. PubMed ID: 23906856 [TBL] [Abstract][Full Text] [Related]
11. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation. Xie H; Yan H; Feng S; Wang Q; Chen P Environ Sci Pollut Res Int; 2016 Oct; 23(19):19362-75. PubMed ID: 27370538 [TBL] [Abstract][Full Text] [Related]
12. Electrolyte management for effective long-term electro-osmotic transport in low-permeability soils. Cherepy NJ; Wildenschild D Environ Sci Technol; 2003 Jul; 37(13):3024-30. PubMed ID: 12875410 [TBL] [Abstract][Full Text] [Related]
13. Long term chemo-hydro-mechanical behavior of compacted soil bentonite polymer complex submitted to synthetic leachate. Razakamanantsoa AR; Djeran-Maigre I Waste Manag; 2016 Jul; 53():92-104. PubMed ID: 27156365 [TBL] [Abstract][Full Text] [Related]
14. Theory for reactive solute transport through clay membrane barriers. Malusis MA; Shackelford CD J Contam Hydrol; 2002 Dec; 59(3-4):291-316. PubMed ID: 12487418 [TBL] [Abstract][Full Text] [Related]
15. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents. Karup D; Moldrup P; Paradelo M; Katuwal S; Norgaard T; Greve MH; de Jonge LW J Contam Hydrol; 2016 Sep; 192():194-202. PubMed ID: 27509309 [TBL] [Abstract][Full Text] [Related]
16. Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches. Marbach S; Yoshida H; Bocquet L J Chem Phys; 2017 May; 146(19):194701. PubMed ID: 28527459 [TBL] [Abstract][Full Text] [Related]
17. The effect of membrane potential on the development of chemical osmotic pressure in compacted clay. Bader S; Heister K J Colloid Interface Sci; 2006 May; 297(1):329-40. PubMed ID: 16289192 [TBL] [Abstract][Full Text] [Related]
18. A laboratory study on migration of K+ in a two-layer landfill liner system. Du YJ; Hayashi S Waste Manag Res; 2005 Oct; 23(5):439-47. PubMed ID: 16273952 [TBL] [Abstract][Full Text] [Related]
19. Theoretical and numerical study of contaminant transport in clayey barriers using a revised numerical model considering the dependency of membrane efficiency and hydraulic conductivity on solute concentration. Sadeghi H; Hedayati-Azar A Heliyon; 2023 May; 9(5):e15148. PubMed ID: 37131437 [TBL] [Abstract][Full Text] [Related]
20. Size effects of pore density and solute size on water osmosis through nanoporous membrane. Zhao K; Wu H J Phys Chem B; 2012 Nov; 116(45):13459-66. PubMed ID: 23116121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]