These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3036224)

  • 1. Vanadate inhibition of ATP-dependent H+ transport in membrane vesicles from turtle bladder epithelial cells.
    Youmans SJ; Brodsky WA
    Biochim Biophys Acta; 1987 Jun; 900(1):88-102. PubMed ID: 3036224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent H+ transport by the turtle bladder: NBD-C1 preferentially inhibits the vanadate-insensitive component in isolated membranes.
    Youmans SJ; Barry CR
    Biochem Biophys Res Commun; 1989 May; 161(1):312-9. PubMed ID: 2471529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effect of inhibitors of H+ ATPase.
    Steinmetz PR; Husted RF; Mueller A; Beauwens R
    J Membr Biol; 1981 Mar; 59(1):27-34. PubMed ID: 6264081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on Mg2+-dependent ATPase in bovine adrenal chromaffin granules. With special reference to the effect of inhibitors and energy coupling.
    Grønberg M; Flatmark T
    Eur J Biochem; 1987 Apr; 164(1):1-8. PubMed ID: 2881784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of valinomycin on vanadate-sensitive and vanadate-resistant H+ transport in vesicles from turtle bladder epithelium: evidence for a K+/H+ exchanger.
    Youmans SJ; Barry CR
    Biochem Biophys Res Commun; 1991 May; 176(3):1285-90. PubMed ID: 2039511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective production of sealed plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue.
    Giannini JL; Gildensoph LH; Briskin DP
    Arch Biochem Biophys; 1987 May; 254(2):621-30. PubMed ID: 2437861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of N-ethylmaleimide-sensitive proton pump in the rat kidney. Localization along the nephron.
    Ait-Mohamed AK; Marsy S; Barlet C; Khadouri C; Doucet A
    J Biol Chem; 1986 Sep; 261(27):12526-33. PubMed ID: 2875072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma membrane proton-ATPase of a turtle bladder epithelial cell line.
    Lubansky HJ; Arruda JA
    J Biol Chem; 1985 Apr; 260(7):4035-40. PubMed ID: 2858486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of vanadate on rat myometrium plasma membrane enzyme activities.
    Grover AK; Jones TR; Daniel EE
    Can J Physiol Pharmacol; 1980 Oct; 58(10):1247-50. PubMed ID: 6907027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of vanadate on the functional properties of the isolated toad bladder.
    Beauwens R; Crabbé J; Rentmeesters M
    J Physiol; 1981 Jan; 310():293-305. PubMed ID: 6785422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active transport of ATP and presence of a vanadate-sensitive membrane-bound ATPase in Mycobacterium leprae.
    Prabhakaran K; Harris EB; Randhawa B
    Microbios; 1991; 67(271):125-32. PubMed ID: 1833612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a vanadate-sensitive potassium-dependent proton pump from rabbit colon.
    Kaunitz JD; Sachs G
    J Biol Chem; 1986 Oct; 261(30):14005-10. PubMed ID: 3021724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling between H+ transport and anaerobic glycolysis in turtle bladder. Vanadate sensitivity of H+ pump.
    Steinmetz PR; Husted RF; Mueller A
    Trans Assoc Am Physicians; 1980; 93():289-94. PubMed ID: 6264659
    [No Abstract]   [Full Text] [Related]  

  • 14. Plasma membrane proton ATPase from human kidney.
    Sallman AL; Lubansky HJ; Talor Z; Arruda JA
    Eur J Biochem; 1986 Jun; 157(3):547-51. PubMed ID: 2873034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic synaptic vesicles contain a V-type and a P-type ATPase.
    Yamagata SK; Parsons SM
    J Neurochem; 1989 Nov; 53(5):1354-62. PubMed ID: 2552014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological role for vanadate-inhibitable active H+ transport: a new model for distal urinary acidification.
    Youmans SJ; Barry CR
    Biochem Biophys Res Commun; 1991 Nov; 180(3):1505-12. PubMed ID: 1953792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding of a KCl-independent, electrogenic, and ATP-driven H+-pumping activity in rat light gastric membranes and its effect on the membrane K+ transport activity.
    Im WB; Blakeman DP; Davis JP
    J Biol Chem; 1986 Sep; 261(25):11686-92. PubMed ID: 2875068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of vanadate on water transport by the toad bladder.
    Arruda JA; Westenfelder C
    Life Sci; 1983 Apr; 32(16):1879-84. PubMed ID: 6188017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dinitrophenyl glutathione efflux from human erythrocytes is primary active ATP-dependent transport.
    LaBelle EF; Singh SV; Srivastava SK; Awasthi YC
    Biochem J; 1986 Sep; 238(2):443-9. PubMed ID: 3643022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-dependent proton transport by isolated brain clathrin-coated vesicles. Role of clathrin and other determinants of acidification.
    Van Dyke RW; Scharschmidt BF; Steer CJ
    Biochim Biophys Acta; 1985 Jan; 812(2):423-36. PubMed ID: 2857093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.