These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30362341)

  • 1. Electric Field-Induced Cutting of Hydrogel Microfibers with Precise Length Control for Micromotors and Building Blocks.
    Deng X; Ren Y; Hou L; Liu W; Jia Y; Jiang H
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40228-40237. PubMed ID: 30362341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compound-Droplet-Pairs-Filled Hydrogel Microfiber for Electric-Field-Induced Selective Release.
    Deng X; Ren Y; Hou L; Liu W; Jiang T; Jiang H
    Small; 2019 Oct; 15(42):e1903098. PubMed ID: 31464378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Helical Microfibers from Microfluidics.
    Yu Y; Fu F; Shang L; Cheng Y; Gu Z; Zhao Y
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28266759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hourglass-Shaped Microfibers.
    Shi R; Tian Y; Zhu P; Tang X; Tian X; Zhou C; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29747-29756. PubMed ID: 32501675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Micromotors with Droplet Microfluidics.
    Zhou C; Zhu P; Tian Y; Xu M; Wang L
    ACS Nano; 2019 Jun; 13(6):6319-6329. PubMed ID: 31091410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Fabrication of Cell-Laden Microfibers for Construction of Aligned Biomimetic Tissue.
    Lu B; Li M; Fang Y; Liu Z; Zhang T; Xiong Z
    Front Bioeng Biotechnol; 2020; 8():610249. PubMed ID: 33585412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical characterization of inter-core coalescence by AC dielectrophoresis in double-emulsion droplets.
    Tao Y; Liu W; Ge Z; Song C; Xue R; Ren Y
    Electrophoresis; 2022 Nov; 43(21-22):2141-2155. PubMed ID: 35661383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically controlled rapid release of actives encapsulated in double-emulsion droplets.
    Jia Y; Ren Y; Hou L; Liu W; Jiang T; Deng X; Tao Y; Jiang H
    Lab Chip; 2018 Mar; 18(7):1121-1129. PubMed ID: 29536065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High pairing rate Janus-structured microfibers and array: high-efficiency conjugate electrospinning fabrication, structure analysis and co-instantaneous multifunctionality of anisotropic conduction, magnetism and enhanced red fluorescence.
    Tian J; Ma Q; Yu W; Li D; Dong X; Liu G; Wang J
    RSC Adv; 2019 Apr; 9(19):10679-10692. PubMed ID: 35515332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection.
    He XH; Wang W; Liu YM; Jiang MY; Wu F; Deng K; Liu Z; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17471-81. PubMed ID: 26192108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Multifunctional Spindle-Knotted Microfibers from Microfluidics.
    Shang L; Fu F; Cheng Y; Yu Y; Wang J; Gu Z; Zhao Y
    Small; 2017 Jan; 13(4):. PubMed ID: 27071374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear-flow-induced graphene coating microfibers from microfluidic spinning.
    Yu Y; Guo J; Zhang H; Wang X; Yang C; Zhao Y
    Innovation (Camb); 2022 Mar; 3(2):100209. PubMed ID: 35199079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated fabrication of hydrogel microfibers with tunable diameters for controlled cell alignment.
    Yang Y; Liu X; Wei D; Zhong M; Sun J; Guo L; Fan H; Zhang X
    Biofabrication; 2017 Nov; 9(4):045009. PubMed ID: 28976359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics.
    Yu Y; Guo J; Ma B; Zhang D; Zhao Y
    Sci Bull (Beijing); 2020 Oct; 65(20):1752-1759. PubMed ID: 36659248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel synthetic microfiber with controllable size for cell encapsulation and culture.
    Wu F; Ju XJ; He XH; Jiang MY; Wang W; Liu Z; Xie R; He B; Chu LY
    J Mater Chem B; 2016 Apr; 4(14):2455-2465. PubMed ID: 32263195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.