These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30362462)

  • 1. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation.
    Lin Y; Chen Z; Fang L; Meng M; Liu Z; Di Y; Cai W; Huang S; Gan Z
    Nanotechnology; 2019 Jan; 30(1):015402. PubMed ID: 30362462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photothermal Conversion Material Derived from Used Cigarette Filters for Solar Steam Generation.
    Sun H; Li Y; Zhu Z; Mu P; Wang F; Liang W; Ma C; Li A
    ChemSusChem; 2019 Sep; 12(18):4257-4264. PubMed ID: 31336029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.
    Yin X; Zhang Y; Guo Q; Cai X; Xiao J; Ding Z; Yang J
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10998-11007. PubMed ID: 29533662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.
    Fan P; Wu H; Zhong M; Zhang H; Bai B; Jin G
    Nanoscale; 2016 Aug; 8(30):14617-24. PubMed ID: 27430171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile and Scalable Fabrication of Surface-Modified Sponge for Efficient Solar Steam Generation.
    Zhang Z; Mu P; He J; Zhu Z; Sun H; Wei H; Liang W; Li A
    ChemSusChem; 2019 Jan; 12(2):426-433. PubMed ID: 30560572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.
    Liu KK; Jiang Q; Tadepalli S; Raliya R; Biswas P; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7675-7681. PubMed ID: 28151641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Solar Steam Generation by Glassy Carbon Foam Coated with Two-Dimensional Metal Chalcogenides.
    Tahir Z; Kim S; Ullah F; Lee S; Lee JH; Park NW; Seong MJ; Lee SK; Ju TS; Park S; Bae JS; Jang JI; Kim YS
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2490-2496. PubMed ID: 31840505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.
    Li Y; Gao T; Yang Z; Chen C; Luo W; Song J; Hitz E; Jia C; Zhou Y; Liu B; Yang B; Hu L
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28470982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation.
    Jiang F; Liu H; Li Y; Kuang Y; Xu X; Chen C; Huang H; Jia C; Zhao X; Hitz E; Zhou Y; Yang R; Cui L; Hu L
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1104-1112. PubMed ID: 29182304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nature-Inspired, 3D Origami Solar Steam Generator toward Near Full Utilization of Solar Energy.
    Hong S; Shi Y; Li R; Zhang C; Jin Y; Wang P
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28517-28524. PubMed ID: 30109921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene and Rice-Straw-Fiber-Based 3D Photothermal Aerogels for Highly Efficient Solar Evaporation.
    Storer DP; Phelps JL; Wu X; Owens G; Khan NI; Xu H
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15279-15287. PubMed ID: 32149489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar-to-Steam Generation via Porous Black Membranes with Tailored Pore Structures.
    Go K; Bae K; Choi H; Kim HY; Lee KJ
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48300-48308. PubMed ID: 31769647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhydrophilic and Oleophobic Porous Architectures Based on Basalt Fibers as Oil-Repellent Photothermal Materials for Solar Steam Generation.
    Chen L; Xia M; Du J; Luo X; Zhang L; Li A
    ChemSusChem; 2020 Feb; 13(3):493-500. PubMed ID: 31794107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Efficiency Solar Membranes Structurally Designed with 3D Core-2D Shell SiO
    Li X; Guan C; Gao X; Zuo X; Yang W; Yan H; Shi M; Li H; Sain M
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35493-35501. PubMed ID: 32659071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar Steam Generation and Desalination Using Ultra-Broadband Absorption in Plasmonic Alumina Nanowire Haze Structure-Graphene Oxide-Gold Nanoparticle Composite.
    Behera S; Kim C; Kim K
    Langmuir; 2020 Oct; 36(42):12494-12503. PubMed ID: 33049134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Supporting Nanoporous Copper Film with High Porosity and Broadband Light Absorption for Efficient Solar Steam Generation.
    Yu B; Wang Y; Zhang Y; Zhang Z
    Nanomicro Lett; 2023 Apr; 15(1):94. PubMed ID: 37037910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Flexible and Efficient Solar Steam Generation Device.
    Chen C; Li Y; Song J; Yang Z; Kuang Y; Hitz E; Jia C; Gong A; Jiang F; Zhu JY; Yang B; Xie J; Hu L
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28605077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Titanium Nitride Nano-enabled Membranes with High Structural Stability for Efficient Photothermal Desalination.
    Farid MU; Kharraz JA; An AK
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3805-3815. PubMed ID: 33444505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building Polyoxometalate "Nano-Walls" on 3D Porous Carbon Paper: A Solar Steam Generation System for Water Purification.
    De Q; Xu X
    Chemistry; 2020 Jun; 26(35):7923-7929. PubMed ID: 32196788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.