These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30362495)
1. Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Guo Y; Wolff FE; Schapiro I; Elstner M; Marazzi M Phys Chem Chem Phys; 2018 Nov; 20(43):27501-27509. PubMed ID: 30362495 [TBL] [Abstract][Full Text] [Related]
2. Nonadiabatic Photodynamics of Retinal Protonated Schiff Base in Channelrhodopsin 2. Liang R; Liu F; Martínez TJ J Phys Chem Lett; 2019 Jun; 10(11):2862-2868. PubMed ID: 31083920 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic Control of Photoisomerization in Channelrhodopsin 2. Liang R; Yu JK; Meisner J; Liu F; Martinez TJ J Am Chem Soc; 2021 Apr; 143(14):5425-5437. PubMed ID: 33794085 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin. Zhou F; Windemuth A; Schulten K Biochemistry; 1993 Mar; 32(9):2291-306. PubMed ID: 8443172 [TBL] [Abstract][Full Text] [Related]
5. Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore. Manathunga M; Yang X; Orozco-Gonzalez Y; Olivucci M J Phys Chem Lett; 2017 Oct; 8(20):5222-5227. PubMed ID: 28981285 [TBL] [Abstract][Full Text] [Related]
6. Direct QM/MM excited-state dynamics of retinal protonated Schiff base in isolation and methanol solution. Punwong C; Owens J; Martínez TJ J Phys Chem B; 2015 Jan; 119(3):704-14. PubMed ID: 25178510 [TBL] [Abstract][Full Text] [Related]
7. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. Cembran A; Bernardi F; Olivucci M; Garavelli M J Am Chem Soc; 2004 Dec; 126(49):16018-37. PubMed ID: 15584736 [TBL] [Abstract][Full Text] [Related]
8. Retinal isomerization and water-pore formation in channelrhodopsin-2. Ardevol A; Hummer G Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3557-3562. PubMed ID: 29555736 [TBL] [Abstract][Full Text] [Related]
9. The Desensitized Channelrhodopsin-2 Photointermediate Contains 13 -cis, 15 -syn Retinal Schiff Base. Becker-Baldus J; Leeder A; Brown LJ; Brown RCD; Bamann C; Glaubitz C Angew Chem Int Ed Engl; 2021 Jul; 60(30):16442-16447. PubMed ID: 33973334 [TBL] [Abstract][Full Text] [Related]
10. Photochemical Properties of the Red-shifted Channelrhodopsin Chrimson. Urmann D; Lorenz C; Linker SM; Braun M; Wachtveitl J; Bamann C Photochem Photobiol; 2017 May; 93(3):782-795. PubMed ID: 28500713 [TBL] [Abstract][Full Text] [Related]
11. Multiple functions of Schiff base counterion in rhodopsins. Tsutsui K; Shichida Y Photochem Photobiol Sci; 2010 Nov; 9(11):1426-34. PubMed ID: 20842311 [TBL] [Abstract][Full Text] [Related]
12. Barrierless Photoisomerization of 11-cis Retinal Protonated Schiff Base in Solution. Bassolino G; Sovdat T; Soares Duarte A; Lim JM; Schnedermann C; Liebel M; Odell B; Claridge TD; Fletcher SP; Kukura P J Am Chem Soc; 2015 Oct; 137(39):12434-7. PubMed ID: 26376448 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast Backbone Protonation in Channelrhodopsin-1 Captured by Polarization Resolved Fs Vis-pump-IR-Probe Spectroscopy and Computational Methods. Stensitzki T; Adam S; Schlesinger R; Schapiro I; Heyne K Molecules; 2020 Feb; 25(4):. PubMed ID: 32075128 [TBL] [Abstract][Full Text] [Related]
14. Unique hydrogen-bonding network in a viral channelrhodopsin. Aoyama M; Katayama K; Kandori H Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149148. PubMed ID: 38906314 [TBL] [Abstract][Full Text] [Related]
15. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy. Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639 [TBL] [Abstract][Full Text] [Related]
16. Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae. Ogren JI; Mamaev S; Russano D; Li H; Spudich JL; Rothschild KJ Biochemistry; 2014 Jun; 53(24):3961-70. PubMed ID: 24869998 [TBL] [Abstract][Full Text] [Related]
17. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base. Tsutsui K; Imai H; Shichida Y Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760 [TBL] [Abstract][Full Text] [Related]
18. Ground and excited states of retinal schiff base chromophores by multiconfigurational perturbation theory. Sekharan S; Weingart O; Buss V Biophys J; 2006 Jul; 91(1):L07-9. PubMed ID: 16648170 [TBL] [Abstract][Full Text] [Related]
19. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
20. NMR probes of vectoriality in the proton-motive photocycle of bacteriorhodopsin: evidence for an 'electrostatic steering' mechanism. Herzfeld J; Tounge B Biochim Biophys Acta; 2000 Aug; 1460(1):95-105. PubMed ID: 10984593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]