These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30362495)
21. Reaction dynamics of the chimeric channelrhodopsin C1C2. Hontani Y; Marazzi M; Stehfest K; Mathes T; van Stokkum IHM; Elstner M; Hegemann P; Kennis JTM Sci Rep; 2017 Aug; 7(1):7217. PubMed ID: 28775289 [TBL] [Abstract][Full Text] [Related]
22. Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Kuhne J; Vierock J; Tennigkeit SA; Dreier MA; Wietek J; Petersen D; Gavriljuk K; El-Mashtoly SF; Hegemann P; Gerwert K Proc Natl Acad Sci U S A; 2019 May; 116(19):9380-9389. PubMed ID: 31004059 [TBL] [Abstract][Full Text] [Related]
23. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219 [TBL] [Abstract][Full Text] [Related]
24. Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes. El-Tahawy MM; Nenov A; Garavelli M J Chem Theory Comput; 2016 Sep; 12(9):4460-75. PubMed ID: 27494352 [TBL] [Abstract][Full Text] [Related]
25. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. Tomida S; Kitagawa S; Kandori H; Furutani Y J Phys Chem B; 2021 Aug; 125(30):8331-8341. PubMed ID: 34292728 [TBL] [Abstract][Full Text] [Related]
26. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202111930. PubMed ID: 34670002 [TBL] [Abstract][Full Text] [Related]
27. Modulation of Light Energy Transfer from Chromophore to Protein in the Channelrhodopsin ReaChR. Kaufmann JCD; Krause BS; Adam S; Ritter E; Schapiro I; Hegemann P; Bartl FJ Biophys J; 2020 Aug; 119(3):705-716. PubMed ID: 32697975 [TBL] [Abstract][Full Text] [Related]
28. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal. Tachikawa H; Iyama T J Photochem Photobiol B; 2004 Oct; 76(1-3):55-60. PubMed ID: 15488716 [TBL] [Abstract][Full Text] [Related]
29. Acid-base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin. Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T Phys Chem Chem Phys; 2019 Nov; 21(46):25728-25734. PubMed ID: 31720623 [TBL] [Abstract][Full Text] [Related]
30. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Kandori H Biochim Biophys Acta; 2004 Jul; 1658(1-2):72-9. PubMed ID: 15282177 [TBL] [Abstract][Full Text] [Related]
32. Synthetic control of retinal photochemistry and photophysics in solution. Bassolino G; Sovdat T; Liebel M; Schnedermann C; Odell B; Claridge TD; Kukura P; Fletcher SP J Am Chem Soc; 2014 Feb; 136(6):2650-8. PubMed ID: 24479840 [TBL] [Abstract][Full Text] [Related]
33. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
34. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. Miyahara T; Nakatsuji H J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358 [TBL] [Abstract][Full Text] [Related]
35. Nonadiabatic ab initio dynamics of two models of Schiff base retinal. Ishida T; Nanbu S; Nakamura H J Phys Chem A; 2009 Apr; 113(16):4356-66. PubMed ID: 19298071 [TBL] [Abstract][Full Text] [Related]
36. Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins. Shionoya T; Singh M; Mizuno M; Kandori H; Mizutani Y Biochemistry; 2021 Oct; 60(41):3050-3057. PubMed ID: 34601881 [TBL] [Abstract][Full Text] [Related]
37. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR; Einterz CM; Knapp HM; Murray LP Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878 [TBL] [Abstract][Full Text] [Related]
38. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
39. How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore. van Keulen SC; Solano A; Rothlisberger U J Chem Theory Comput; 2017 Sep; 13(9):4524-4534. PubMed ID: 28731695 [TBL] [Abstract][Full Text] [Related]
40. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227. Imasheva ES; Shimono K; Balashov SP; Wang JM; Zadok U; Sheves M; Kamo N; Lanyi JK Biochemistry; 2005 Aug; 44(32):10828-38. PubMed ID: 16086585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]