These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30362495)
41. Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations. Yang T; Zhang W; Cheng J; Nie Y; Xin Q; Yuan S; Dou Y Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31382458 [TBL] [Abstract][Full Text] [Related]
42. Dependence of photochemical reactivity of the all-trans retinal protonated Schiff base on the solvent and the excitation wavelength. Zgrablić G; Ricci M; Novello AM; Parmigiani F Photochem Photobiol; 2010; 86(3):507-12. PubMed ID: 20132512 [TBL] [Abstract][Full Text] [Related]
43. A physiochemical study of excited state intramolecular proton transfer process-Luminescent chemosensor by spectroscopic investigation supported by ab initio calculations. Jayabharathi J; Thanikachalam V; Jayamoorthy K; Perumal MV Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jun; 79(1):6-16. PubMed ID: 21398171 [TBL] [Abstract][Full Text] [Related]
44. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal. Chung WC; Nanbu S; Ishida T J Phys Chem A; 2010 Aug; 114(32):8190-201. PubMed ID: 20666503 [TBL] [Abstract][Full Text] [Related]
45. Photoisomerization mechanism of 11-cis-locked artificial retinal chromophores: acceleration and primary photoproduct assignment. De Vico L; Garavelli M; Bernardi F; Olivucci M J Am Chem Soc; 2005 Mar; 127(8):2433-42. PubMed ID: 15724998 [TBL] [Abstract][Full Text] [Related]
46. FTIR studies of the photoactivation processes in squid retinochrome. Furutani Y; Terakita A; Shichida Y; Kandori H Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417 [TBL] [Abstract][Full Text] [Related]
47. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Edman K; Nollert P; Royant A; Belrhali H; Pebay-Peyroula E; Hajdu J; Neutze R; Landau EM Nature; 1999 Oct; 401(6755):822-6. PubMed ID: 10548112 [TBL] [Abstract][Full Text] [Related]
48. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D; Furutani Y; Kandori H Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036 [TBL] [Abstract][Full Text] [Related]
49. Investigating the mechanism of photoisomerization in jellyfish rhodopsin with the counterion at an atypical position. Inukai S; Katayama K; Koyanagi M; Terakita A; Kandori H J Biol Chem; 2023 Jun; 299(6):104726. PubMed ID: 37094700 [TBL] [Abstract][Full Text] [Related]
50. Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin. Manathunga M; Jenkins AJ; Orozco-Gonzalez Y; Ghanbarpour A; Borhan B; Geiger JH; Larsen DS; Olivucci M J Phys Chem Lett; 2020 Jun; 11(11):4245-4252. PubMed ID: 32374610 [TBL] [Abstract][Full Text] [Related]
51. Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins. Otomo A; Mizuno M; Singh M; Shihoya W; Inoue K; Nureki O; Béjà O; Kandori H; Mizutani Y J Phys Chem Lett; 2018 Nov; 9(22):6431-6436. PubMed ID: 30351947 [TBL] [Abstract][Full Text] [Related]
52. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin. Bühl E; Braun M; Lakatos A; Glaubitz C; Wachtveitl J Biol Chem; 2015 Sep; 396(9-10):1109-15. PubMed ID: 26083266 [TBL] [Abstract][Full Text] [Related]
53. Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. Nina M; Roux B; Smith JC Biophys J; 1995 Jan; 68(1):25-39. PubMed ID: 7711248 [TBL] [Abstract][Full Text] [Related]
54. Retinal shows its true colours: photoisomerization action spectra of mobility-selected isomers of the retinal protonated Schiff base. Coughlan NJ; Adamson BD; Gamon L; Catani K; Bieske EJ Phys Chem Chem Phys; 2015 Sep; 17(35):22623-31. PubMed ID: 26280514 [TBL] [Abstract][Full Text] [Related]
55. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K. Kawanabe A; Furutani Y; Jung KH; Kandori H Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171 [TBL] [Abstract][Full Text] [Related]
56. Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis. Mizuno M; Nakajima A; Kandori H; Mizutani Y J Phys Chem A; 2018 Mar; 122(9):2411-2423. PubMed ID: 29460629 [TBL] [Abstract][Full Text] [Related]
57. Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization. Hashimoto K; Choi AR; Furutani Y; Jung KH; Kandori H Biochemistry; 2010 Apr; 49(15):3343-50. PubMed ID: 20230053 [TBL] [Abstract][Full Text] [Related]
58. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin. Shigeta A; Ito S; Inoue K; Okitsu T; Wada A; Kandori H; Kawamura I Biochemistry; 2017 Jan; 56(4):543-550. PubMed ID: 28040890 [TBL] [Abstract][Full Text] [Related]
59. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins. Furutani Y; Shibata M; Kandori H Photochem Photobiol Sci; 2005 Sep; 4(9):661-6. PubMed ID: 16121274 [TBL] [Abstract][Full Text] [Related]
60. Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base. Yi A; Mamaeva N; Li H; Spudich JL; Rothschild KJ Biochemistry; 2016 Apr; 55(16):2371-80. PubMed ID: 27039989 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]