These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30362495)
61. The retinal chromophore/chloride ion pair: structure of the photoisomerization path and interplay of charge transfer and covalent states. Cembran A; Bernardi F; Olivucci M; Garavelli M Proc Natl Acad Sci U S A; 2005 May; 102(18):6255-60. PubMed ID: 15855270 [TBL] [Abstract][Full Text] [Related]
62. Water-containing hydrogen-bonding network in the active center of channelrhodopsin. Ito S; Kato HE; Taniguchi R; Iwata T; Nureki O; Kandori H J Am Chem Soc; 2014 Mar; 136(9):3475-82. PubMed ID: 24512107 [TBL] [Abstract][Full Text] [Related]
63. Probing ultrafast photochemistry of retinal proteins in the near-IR: bacteriorhodopsin and anabaena sensory rhodopsin vs retinal protonated Schiff base in solution. Wand A; Loevsky B; Friedman N; Sheves M; Ruhman S J Phys Chem B; 2013 Apr; 117(16):4670-9. PubMed ID: 23140223 [TBL] [Abstract][Full Text] [Related]
64. Mechanism of primary proton transfer in bacteriorhodopsin. Bondar AN; Elstner M; Suhai S; Smith JC; Fischer S Structure; 2004 Jul; 12(7):1281-8. PubMed ID: 15242604 [TBL] [Abstract][Full Text] [Related]
65. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M; Ihara K; Kandori H Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215 [TBL] [Abstract][Full Text] [Related]
66. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1. Schnedermann C; Muders V; Ehrenberg D; Schlesinger R; Kukura P; Heberle J J Am Chem Soc; 2016 Apr; 138(14):4757-62. PubMed ID: 26999496 [TBL] [Abstract][Full Text] [Related]
68. Photodynamics in complex environments: ab initio multiple spawning quantum mechanical/molecular mechanical dynamics. Virshup AM; Punwong C; Pogorelov TV; Lindquist BA; Ko C; Martínez TJ J Phys Chem B; 2009 Mar; 113(11):3280-91. PubMed ID: 19090684 [TBL] [Abstract][Full Text] [Related]
69. Effect of protonation on the isomerization properties of n-butylamine Schiff base of isomeric retinal as revealed by direct HPLC analyses: selection of isomerization pathways by retinal proteins. Koyama Y; Kubo K; Komori M; Yasuda H; Mukai Y Photochem Photobiol; 1991 Sep; 54(3):433-43. PubMed ID: 1784642 [TBL] [Abstract][Full Text] [Related]
70. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin. Furutani Y; Shichida Y; Kandori H Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303 [TBL] [Abstract][Full Text] [Related]
71. Replacement effects of neutral amino acid residues of different molecular volumes in the retinal binding cavity of bacteriorhodopsin on the dynamics of its primary process. Logunov SL; el-Sayed MA; Lanyi JK Biophys J; 1996 Jun; 70(6):2875-81. PubMed ID: 8744325 [TBL] [Abstract][Full Text] [Related]
72. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases. Kraack JP; Buckup T; Motzkus M Phys Chem Chem Phys; 2011 Dec; 13(48):21402-10. PubMed ID: 22033578 [TBL] [Abstract][Full Text] [Related]
73. Hydrogen-bonding alterations of the protonated Schiff base and water molecule in the chloride pump of Natronobacterium pharaonis. Shibata M; Muneda N; Sasaki T; Shimono K; Kamo N; Demura M; Kandori H Biochemistry; 2005 Sep; 44(37):12279-86. PubMed ID: 16156641 [TBL] [Abstract][Full Text] [Related]
74. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941 [TBL] [Abstract][Full Text] [Related]
75. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base. Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417 [TBL] [Abstract][Full Text] [Related]
76. Molecular dynamics simulation of bacteriorhodopsin's photoisomerization using ab initio forces for the excited chromophore. Hayashi S; Tajkhorshid E; Schulten K Biophys J; 2003 Sep; 85(3):1440-9. PubMed ID: 12944261 [TBL] [Abstract][Full Text] [Related]
77. The role of the beta-ionone ring in the photochemical reaction of rhodopsin. Send R; Sundholm D J Phys Chem A; 2007 Jan; 111(1):27-33. PubMed ID: 17201384 [TBL] [Abstract][Full Text] [Related]
78. Action and Ion Mobility Spectroscopy of a Shortened Retinal Derivative. Musbat L; Assis S; Dilger JM; El-Baba TJ; Fuller DR; Knudsen JL; Kiefer HV; Hirshfeld A; Friedman N; Andersen LH; Sheves M; Clemmer DE; Toker Y J Am Soc Mass Spectrom; 2018 Nov; 29(11):2152-2159. PubMed ID: 30062478 [TBL] [Abstract][Full Text] [Related]
79. Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae. Ogren JI; Yi A; Mamaev S; Li H; Lugtenburg J; DeGrip WJ; Spudich JL; Rothschild KJ Biochemistry; 2015 Jan; 54(2):377-88. PubMed ID: 25469620 [TBL] [Abstract][Full Text] [Related]
80. Schiff Base Proton Acceptor Assists Photoisomerization of Retinal Chromophores in Bacteriorhodopsin. Hung CC; Chen XR; Ko YK; Kobayashi T; Yang CS; Yabushita A Biophys J; 2017 Jun; 112(12):2503-2519. PubMed ID: 28636908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]