These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30362495)
81. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates. Urui T; Mizuno M; Otomo A; Kandori H; Mizutani Y J Phys Chem B; 2021 Jul; 125(26):7155-7162. PubMed ID: 34167296 [TBL] [Abstract][Full Text] [Related]
82. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K. Maeda A; Tomson FL; Gennis RB; Ebrey TG; Balashov SP Biochemistry; 1999 Jul; 38(27):8800-7. PubMed ID: 10393556 [TBL] [Abstract][Full Text] [Related]
83. The structures of bacteriorhodopsin with different retinal-Schiff base orientations--computer modeling and energy minimization studies. Sankararamakrishnan R; Vishveshwara S J Biomol Struct Dyn; 1992 Jun; 9(6):1073-95. PubMed ID: 1637503 [TBL] [Abstract][Full Text] [Related]
84. Photoisomerization kinetics of 11-cis-retinal, its Schiff base, and its protonated Schiff base. Menger EL; Kliger DS J Am Chem Soc; 1976 Jun; 98(13):3975-9. PubMed ID: 932351 [No Abstract] [Full Text] [Related]
85. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Hayashi S; Tajkhorshid E; Schulten K Biophys J; 2002 Sep; 83(3):1281-97. PubMed ID: 12202355 [TBL] [Abstract][Full Text] [Related]
86. Photocycle Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor QuasAr1. Penzkofer A; Silapetere A; Hegemann P Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31881701 [TBL] [Abstract][Full Text] [Related]
87. Photoresponse of the protonated Schiff-base retinal chromophore in the gas phase. Toker Y; Rahbek DB; Kiefer HV; Rajput J; Antoine R; Dugourd P; Brøndsted Nielsen S; Bochenkova AV; Andersen LH Phys Chem Chem Phys; 2013 Dec; 15(45):19566-9. PubMed ID: 24142109 [TBL] [Abstract][Full Text] [Related]
88. A study on the mechanism of the proton transport in bacteriorhodopsin: the importance of the water molecule. Murata K; Fujii Y; Enomoto N; Hata M; Hoshino T; Tsuda M Biophys J; 2000 Aug; 79(2):982-91. PubMed ID: 10920028 [TBL] [Abstract][Full Text] [Related]
89. Structure of the intersection space associated with ZIE photoisomerization of retinal in rhodopsin proteins. Migani A; Sinicropi A; Ferré N; Cembran A; Garavelli M; Olivucci M Faraday Discuss; 2004; 127():179-91. PubMed ID: 15471346 [TBL] [Abstract][Full Text] [Related]
90. Structural Factors Determining the Absorption Spectrum of Channelrhodopsins: A Case Study of the Chimera C1C2. Adam S; Wiebeler C; Schapiro I J Chem Theory Comput; 2021 Oct; 17(10):6302-6313. PubMed ID: 34255519 [TBL] [Abstract][Full Text] [Related]
91. Excited-state properties and environmental effects for protonated schiff bases: a theoretical study. Aquino AJ; Barbatti M; Lischka H Chemphyschem; 2006 Oct; 7(10):2089-96. PubMed ID: 16941558 [TBL] [Abstract][Full Text] [Related]
92. Unusual Photoisomerization Pathway in a Near-Infrared Light Absorbing Enzymerhodopsin. Sugiura M; Ishikawa K; Katayama K; Sumii Y; Abe-Yoshizumi R; Tsunoda SP; Furutani Y; Shibata N; Brown LS; Kandori H J Phys Chem Lett; 2022 Oct; 13(40):9539-9543. PubMed ID: 36201035 [TBL] [Abstract][Full Text] [Related]
93. S1 and S2 excited States of gas-phase Schiff-base retinal chromophores. Nielsen IB; Lammich L; Andersen LH Phys Rev Lett; 2006 Jan; 96(1):018304. PubMed ID: 16486529 [TBL] [Abstract][Full Text] [Related]
94. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin. Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785 [TBL] [Abstract][Full Text] [Related]
95. Correction: Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Guo Y; Wolff FE; Schapiro I; Elstner M; Marazzi M Phys Chem Chem Phys; 2019 May; 21(18):9605. PubMed ID: 31011726 [TBL] [Abstract][Full Text] [Related]
96. The involvement of triplet states in the isomerization of retinaloids. Filiba O; Borin VA; Schapiro I Phys Chem Chem Phys; 2022 Nov; 24(42):26223-26231. PubMed ID: 36278932 [TBL] [Abstract][Full Text] [Related]
97. QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins. Silapetere A; Hwang S; Hontani Y; Fernandez Lahore RG; Balke J; Escobar FV; Tros M; Konold PE; Matis R; Croce R; Walla PJ; Hildebrandt P; Alexiev U; Kennis JTM; Sun H; Utesch T; Hegemann P Nat Commun; 2022 Sep; 13(1):5501. PubMed ID: 36127376 [TBL] [Abstract][Full Text] [Related]
98. Crystal structure of a natural light-gated anion channelrhodopsin. Li H; Huang CY; Govorunova EG; Schafer CT; Sineshchekov OA; Wang M; Zheng L; Spudich JL Elife; 2019 Jan; 8():. PubMed ID: 30614787 [TBL] [Abstract][Full Text] [Related]
99. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations. Grabarek D; Andruniów T J Comput Chem; 2018 Aug; 39(22):1720-1727. PubMed ID: 29727036 [TBL] [Abstract][Full Text] [Related]
100. Crystal structure of the red light-activated channelrhodopsin Chrimson. Oda K; Vierock J; Oishi S; Rodriguez-Rozada S; Taniguchi R; Yamashita K; Wiegert JS; Nishizawa T; Hegemann P; Nureki O Nat Commun; 2018 Sep; 9(1):3949. PubMed ID: 30258177 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]