These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30362495)
101. Control of Protonated Schiff Base Excited State Decay within Visual Protein Mimics: A Unified Model for Retinal Chromophores. Demoulin B; Maiuri M; Berbasova T; Geiger JH; Borhan B; Garavelli M; Cerullo G; Rivalta I Chemistry; 2021 Nov; 27(66):16389-16400. PubMed ID: 34653286 [TBL] [Abstract][Full Text] [Related]
102. Red-Tuning of the Channelrhodopsin Spectrum Using Long Conjugated Retinal Analogues. Shen YC; Sasaki T; Matsuyama T; Yamashita T; Shichida Y; Okitsu T; Yamano Y; Wada A; Ishizuka T; Yawo H; Imamoto Y Biochemistry; 2018 Sep; 57(38):5544-5556. PubMed ID: 30153419 [TBL] [Abstract][Full Text] [Related]
103. Nonadiabatic photodynamics of a retinal model in polar and nonpolar environment. Ruckenbauer M; Barbatti M; Müller T; Lischka H J Phys Chem A; 2013 Apr; 117(13):2790-9. PubMed ID: 23470211 [TBL] [Abstract][Full Text] [Related]
104. Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping. Altoè P; Cembran A; Olivucci M; Garavelli M Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20172-7. PubMed ID: 21048087 [TBL] [Abstract][Full Text] [Related]
105. The effect on ion channel of different protonation states of E90 in channelrhodopsin-2: a molecular dynamics simulation. Cheng J; Zhang W; Zhou S; Ran X; Shang Y; Lo GV; Dou Y; Yuan S RSC Adv; 2021 Apr; 11(24):14542-14551. PubMed ID: 35424009 [TBL] [Abstract][Full Text] [Related]
106. Effect of a bound anion on the structure and dynamics of halorhodopsin from Mizuno M; Shimoo Y; Kandori H; Mizutani Y Struct Dyn; 2019 Sep; 6(5):054703. PubMed ID: 31673569 [TBL] [Abstract][Full Text] [Related]
107. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Kishi KE; Kim YS; Fukuda M; Inoue M; Kusakizako T; Wang PY; Ramakrishnan C; Byrne EFX; Thadhani E; Paggi JM; Matsui TE; Yamashita K; Nagata T; Konno M; Quirin S; Lo M; Benster T; Uemura T; Liu K; Shibata M; Nomura N; Iwata S; Nureki O; Dror RO; Inoue K; Deisseroth K; Kato HE Cell; 2022 Feb; 185(4):672-689.e23. PubMed ID: 35114111 [TBL] [Abstract][Full Text] [Related]
108. Mechanism by which water and protein electrostatic interactions control proton transfer at the active site of channelrhodopsin. Adam S; Bondar AN PLoS One; 2018; 13(8):e0201298. PubMed ID: 30086158 [TBL] [Abstract][Full Text] [Related]
109. Triplet states and cis-trans photoisomerization processes in the Schiff bases of retinal isomers. Rosenfeld T; Alchalel A; Ottolenghi M Photochem Photobiol; 1974 Aug; 20(2):121-5. PubMed ID: 4855262 [No Abstract] [Full Text] [Related]
110. Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa. Warren MM; Kaucikas M; Fitzpatrick A; Champion P; Sage JT; van Thor JJ Nat Commun; 2013; 4():1461. PubMed ID: 23403562 [TBL] [Abstract][Full Text] [Related]
111. Relative ground and excited state energies of CH3(CH = CH)5CH = NC4H9, its hydrogen-bonded and proton-transferred species, and charge partitioning and distribution in the protonated Schiff base of retinal. Blatz PE; Tompkins JA Photochem Photobiol; 1993 Sep; 58(3):400-8. PubMed ID: 8234475 [TBL] [Abstract][Full Text] [Related]
112. SNap Bond, a Crucial Hydrogen Bond Between Ser in Helix 3 and Asn in Helix 4, Regulates the Structural Dynamics of Heliorhodopsin. Nakamura T; Singh M; Sugiura M; Kato S; Yamamoto R; Kandori H; Furutani Y J Mol Biol; 2024 Aug; 436(16):168666. PubMed ID: 38880378 [TBL] [Abstract][Full Text] [Related]
113. Channelrhodopsin C1C2: Photocycle kinetics and interactions near the central gate. VanGordon MR; Prignano LA; Dempski RE; Rick SW; Rempe SB Biophys J; 2021 May; 120(9):1835-1845. PubMed ID: 33705762 [TBL] [Abstract][Full Text] [Related]
114. Structural Models of the First Molecular Events in the Heliorhodopsin Photocycle. Wijesiri K; Gascón JA J Phys Chem B; 2024 Jun; 128(25):5966-5972. PubMed ID: 38877606 [TBL] [Abstract][Full Text] [Related]
115. Photocycle dynamics of the Archaerhodopsin 3 based fluorescent voltage sensor Archon2. Penzkofer A; Silapetere A; Hegemann P J Photochem Photobiol B; 2021 Dec; 225():112331. PubMed ID: 34688164 [TBL] [Abstract][Full Text] [Related]
116. Active site structure and absorption spectrum of channelrhodopsin-2 wild-type and C128T mutant. Guo Y; Beyle FE; Bold BM; Watanabe HC; Koslowski A; Thiel W; Hegemann P; Marazzi M; Elstner M Chem Sci; 2016 Jun; 7(6):3879-3891. PubMed ID: 30155032 [TBL] [Abstract][Full Text] [Related]
117. Twisting and Protonation of Retinal Chromophore Regulate Channel Gating of Channelrhodopsin C1C2. Shibata K; Oda K; Nishizawa T; Hazama Y; Ono R; Takaramoto S; Bagherzadeh R; Yawo H; Nureki O; Inoue K; Akiyama H J Am Chem Soc; 2023 May; 145(19):10779-10789. PubMed ID: 37129501 [TBL] [Abstract][Full Text] [Related]
118. Visual pigments. V. Ground and excited-state acid dissociation constants of protonated all-trans retinal schiff base and correlation with theory. Schaffer AM; Yamaoka T; Becker RS Photochem Photobiol; 1975 May; 21(5):297-301. PubMed ID: 1208656 [No Abstract] [Full Text] [Related]
119. Comprehensive Empirical Model of Substitution-Influence on Hydrogen Bonding in Aromatic Schiff Bases. Krupka KM; Pocheć M; Panek JJ; Jezierska A Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293296 [TBL] [Abstract][Full Text] [Related]
120. The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore Isomerization. Morozov D; Modi V; Mironov V; Groenhof G J Phys Chem Lett; 2022 May; 13(20):4538-4542. PubMed ID: 35576453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]