These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 30362700)

  • 1. Mimicking Cell Surface Enhancement of Protease Activity on the Surface of a Quantum Dot Nanoparticle.
    Jeen T; Algar WR
    Bioconjug Chem; 2018 Nov; 29(11):3783-3792. PubMed ID: 30362700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity.
    Krause KD; Rees K; Darwish GH; Bernal-Escalante J; Algar WR
    ACS Nano; 2024 Jul; 18(26):17018-17030. PubMed ID: 38845136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of proteolytic activity associated with selection of thiol ligand coatings on quantum dots.
    Wu M; Algar WR
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2535-45. PubMed ID: 25607728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of thrombin activity with PAR 1-based fluorogenic peptides.
    Vieira SM; dos Reis FG; Geraldo R; Dutra DL; Juliano L; Julianod MA; Mignaco JA; Zingali RB
    Protein Pept Lett; 2013 Oct; 20(10):1129-35. PubMed ID: 23688151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering thrombin for selective specificity toward protein C and PAR1.
    Marino F; Pelc LA; Vogt A; Gandhi PS; Di Cera E
    J Biol Chem; 2010 Jun; 285(25):19145-52. PubMed ID: 20404340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration.
    Wu M; Petryayeva E; Algar WR
    Anal Chem; 2014 Nov; 86(22):11181-8. PubMed ID: 25361050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality.
    Algar WR; Khachatrian A; Melinger JS; Huston AL; Stewart MH; Susumu K; Blanco-Canosa JB; Oh E; Dawson PE; Medintz IL
    J Am Chem Soc; 2017 Jan; 139(1):363-372. PubMed ID: 28009161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization and Changes in the Mode of Proteolytic Turnover of Quantum Dot-Peptide Substrate Conjugates through Moderation of Interfacial Adsorption.
    Petryayeva E; Jeen T; Algar WR
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30359-30372. PubMed ID: 28846381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal-on Protein Detection via Dye Translocation between Aptamer and Quantum Dot.
    Lao YH; Chi CW; Friedrich SM; Peck K; Wang TH; Leong KW; Chen LC
    ACS Appl Mater Interfaces; 2016 May; 8(19):12048-55. PubMed ID: 27101438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of protease-activated receptor 1 (PAR1) on platelets and responsiveness to thrombin receptor activating peptide (TRAP) during systemic inflammation in humans.
    Reiter R; Derhaschnig U; Spiel A; Keen P; Cardona F; Mayr F; Jilma B
    Thromb Haemost; 2003 Nov; 90(5):898-903. PubMed ID: 14597986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions.
    Prasuhn DE; Feltz A; Blanco-Canosa JB; Susumu K; Stewart MH; Mei BC; Yakovlev AV; Loukov C; Mallet JM; Oheim M; Dawson PE; Medintz IL
    ACS Nano; 2010 Sep; 4(9):5487-97. PubMed ID: 20822159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1.
    Gandhi PS; Chen Z; Di Cera E
    J Biol Chem; 2010 May; 285(20):15393-15398. PubMed ID: 20236938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolysis of the exodomain of recombinant protease-activated receptors: prediction of receptor activation or inactivation by MALDI mass spectrometry.
    Loew D; Perrault C; Morales M; Moog S; Ravanat C; Schuhler S; Arcone R; Pietropaolo C; Cazenave JP; van Dorsselaer A; Lanza F
    Biochemistry; 2000 Sep; 39(35):10812-22. PubMed ID: 10978167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
    Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL
    Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Multiple PAR1 Receptor/Protein Interactions to their Multiple Therapeutic Implications.
    Gutiérrez-Rodríguez M; Herranz R
    Curr Top Med Chem; 2015; 15(20):2080-114. PubMed ID: 25986685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis.
    Leger AJ; Jacques SL; Badar J; Kaneider NC; Derian CK; Andrade-Gordon P; Covic L; Kuliopulos A
    Circulation; 2006 Mar; 113(9):1244-54. PubMed ID: 16505172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.