BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30362715)

  • 1. Conformational Entropy as a Determinant of the Thermodynamic Stability of the p53 Core Domain.
    Bej A; Rasquinha JA; Mukherjee S
    Biochemistry; 2018 Nov; 57(44):6265-6269. PubMed ID: 30362715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Differences in Backbone Dynamics between Wild Type and DNA-Contact Mutants of the p53 DNA Binding Domain Revealed by Nuclear Magnetic Resonance Spectroscopy.
    Rasquinha JA; Bej A; Dutta S; Mukherjee S
    Biochemistry; 2017 Sep; 56(37):4962-4971. PubMed ID: 28836764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations.
    Koulgi S; Achalere A; Sonavane U; Joshi R
    PLoS One; 2015; 10(11):e0143065. PubMed ID: 26579714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic stability of wild-type and mutant p53 core domain.
    Bullock AN; Henckel J; DeDecker BS; Johnson CM; Nikolova PV; Proctor MR; Lane DP; Fersht AR
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14338-42. PubMed ID: 9405613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant.
    Ishimaru D; Maia LF; Maiolino LM; Quesado PA; Lopez PC; Almeida FC; Valente AP; Silva JL
    J Mol Biol; 2003 Oct; 333(2):443-51. PubMed ID: 14529628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein.
    Bromley D; Bauer MR; Fersht AR; Daggett V
    Protein Eng Des Sel; 2016 Sep; 29(9):377-90. PubMed ID: 27503952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. R248Q mutation--Beyond p53-DNA binding.
    Ng JW; Lama D; Lukman S; Lane DP; Verma CS; Sim AY
    Proteins; 2015 Dec; 83(12):2240-50. PubMed ID: 26442703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A split-ubiquitin-based assay detects the influence of mutations on the conformational stability of the p53 DNA binding domain in vivo.
    Johnsson N
    FEBS Lett; 2002 Nov; 531(2):259-64. PubMed ID: 12417323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations.
    Nikolova PV; Wong KB; DeDecker B; Henckel J; Fersht AR
    EMBO J; 2000 Feb; 19(3):370-8. PubMed ID: 10654936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.
    Samanta S; Mukherjee S
    J Comput Aided Mol Des; 2017 Oct; 31(10):891-903. PubMed ID: 28871352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution structure of the p53 core domain: implications for binding small-molecule stabilizing compounds.
    Ho WC; Luo C; Zhao K; Chai X; Fitzgerald MX; Marmorstein R
    Acta Crystallogr D Biol Crystallogr; 2006 Dec; 62(Pt 12):1484-93. PubMed ID: 17139084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue.
    Wallentine BD; Wang Y; Tretyachenko-Ladokhina V; Tan M; Senear DF; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2146-56. PubMed ID: 24100332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water's potential role: Insights from studies of the p53 core domain.
    Xu X; Ma Z; Wang X; Xiao ZT; Li Y; Xue ZH; Wang YH
    J Struct Biol; 2012 Feb; 177(2):358-66. PubMed ID: 22197648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules.
    Friedler A; Veprintsev DB; Hansson LO; Fersht AR
    J Biol Chem; 2003 Jun; 278(26):24108-12. PubMed ID: 12700230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy.
    Bullock AN; Henckel J; Fersht AR
    Oncogene; 2000 Mar; 19(10):1245-56. PubMed ID: 10713666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides.
    Tal P; Eizenberger S; Cohen E; Goldfinger N; Pietrokovski S; Oren M; Rotter V
    Oncotarget; 2016 Mar; 7(11):11817-37. PubMed ID: 26943582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core.
    Khoo KH; Joerger AC; Freund SM; Fersht AR
    Protein Eng Des Sel; 2009 Jul; 22(7):421-30. PubMed ID: 19515728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.