These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30362758)

  • 1. Maximum Likelihood Analysis of Reaction Coordinates during Solidification in Ni.
    Díaz Leines G; Rogal J
    J Phys Chem B; 2018 Dec; 122(48):10934-10942. PubMed ID: 30362758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic insight into the non-classical nucleation mechanism during solidification in Ni.
    Díaz Leines G; Drautz R; Rogal J
    J Chem Phys; 2017 Apr; 146(15):154702. PubMed ID: 28433018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction coordinates for the crystal nucleation of colloidal suspensions extracted from the reweighted path ensemble.
    Lechner W; Dellago C; Bolhuis PG
    J Chem Phys; 2011 Oct; 135(15):154110. PubMed ID: 22029300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of pre-ordered liquid in the selection mechanism of crystal polymorphs during nucleation.
    Menon S; Díaz Leines G; Drautz R; Rogal J
    J Chem Phys; 2020 Sep; 153(10):104508. PubMed ID: 32933267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of structural and dynamical heterogeneity in the nucleation mechanism in nickel.
    Díaz Leines G; Michaelides A; Rogal J
    Faraday Discuss; 2022 Jul; 235(0):406-415. PubMed ID: 35388822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the prestructured surface cloud in crystal nucleation.
    Lechner W; Dellago C; Bolhuis PG
    Phys Rev Lett; 2011 Feb; 106(8):085701. PubMed ID: 21405585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonclassical nucleation pathways in protein crystallization.
    Zhang F
    J Phys Condens Matter; 2017 Nov; 29(44):443002. PubMed ID: 28984274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Local Order Parameter-Based Method for Simulation of Free Energy Barriers in Crystal Nucleation.
    Eslami H; Khanjari N; Müller-Plathe F
    J Chem Theory Comput; 2017 Mar; 13(3):1307-1316. PubMed ID: 28195473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a size dependent nucleation mechanism in solid state polymorph transformations.
    Beckham GT; Peters B; Trout BL
    J Phys Chem B; 2008 Jun; 112(25):7460-6. PubMed ID: 18528974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hit and miss of classical nucleation theory as revealed by a molecular simulation study of crystal nucleation in supercooled sulfur hexafluoride.
    Leyssale JM; Delhommelle J; Millot C
    J Chem Phys; 2007 Jul; 127(4):044504. PubMed ID: 17672704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt.
    He X; Shen Y; Hung FR; Santiso EE
    J Chem Phys; 2015 Sep; 143(12):124506. PubMed ID: 26429023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drastic enhancement of crystal nucleation in a molecular liquid by its liquid-liquid transition.
    Kurita R; Tanaka H
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24949-24955. PubMed ID: 31767771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of the kinetics and thermodynamics of NaCl nucleation through composite clusters.
    Bulutoglu PS; Wang S; Boukerche M; Nere NK; Corti DS; Ramkrishna D
    PNAS Nexus; 2022 May; 1(2):pgac033. PubMed ID: 36713321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a crystal nucleus from liquid.
    Kawasaki T; Tanaka H
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14036-41. PubMed ID: 20663951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations of homogeneous nucleation of benzene from the melt.
    Shah M; Santiso EE; Trout BL
    J Phys Chem B; 2011 Sep; 115(35):10400-12. PubMed ID: 21786769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.