These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 30362771)
1. Molecular Dynamics Simulations of Lithium-Doped Ionic-Liquid Electrolytes. Ray P; Balducci A; Kirchner B J Phys Chem B; 2018 Nov; 122(46):10535-10547. PubMed ID: 30362771 [TBL] [Abstract][Full Text] [Related]
2. Cation influence on heterocyclic ammonium ionic liquids: a molecular dynamics study. Ray P; Elfgen R; Kirchner B Phys Chem Chem Phys; 2019 Feb; 21(8):4472-4486. PubMed ID: 30734802 [TBL] [Abstract][Full Text] [Related]
3. Structural Investigations on Lithium-Doped Protic and Aprotic Ionic Liquids. Ray P; Vogl T; Balducci A; Kirchner B J Phys Chem B; 2017 May; 121(20):5279-5292. PubMed ID: 28471685 [TBL] [Abstract][Full Text] [Related]
4. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability. Haskins JB; Bauschlicher CW; Lawson JW J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208 [TBL] [Abstract][Full Text] [Related]
5. Structure and Transport Properties of Lithium-Doped Aprotic and Protic Ionic Liquid Electrolytes: Insights from Molecular Dynamics Simulations. Nasrabadi AT; Ganesan V J Phys Chem B; 2019 Jul; 123(26):5588-5600. PubMed ID: 31244094 [TBL] [Abstract][Full Text] [Related]
6. Molecular Dynamics Analysis of Charge Transport in Ionic-Liquid Electrolytes Containing Added Salt with Mono, Di, and Trivalent Metal Cations. Vicent-Luna JM; Azaceta E; Hamad S; Ortiz-Roldán JM; Tena-Zaera R; Calero S; Anta JA Chemphyschem; 2018 Jul; 19(13):1665-1673. PubMed ID: 29668113 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Li Bolimowska E; Castiglione F; Devemy J; Rouault H; Mele A; Pádua AAH; Santini CC J Phys Chem B; 2018 Sep; 122(36):8560-8569. PubMed ID: 30118227 [TBL] [Abstract][Full Text] [Related]
8. Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Vogl T; Menne S; Balducci A Phys Chem Chem Phys; 2014 Dec; 16(45):25014-23. PubMed ID: 25328075 [TBL] [Abstract][Full Text] [Related]
9. Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide-doped ionic liquids of the pyrrolidinium cation and Bis(trifluoromethanesulfonyl)imide anion. Martinelli A; Matic A; Jacobsson P; Börjesson L; Fernicola A; Scrosati B J Phys Chem B; 2009 Aug; 113(32):11247-51. PubMed ID: 19621942 [TBL] [Abstract][Full Text] [Related]
10. Solvation Structure and Dynamics of Li Huang Q; Lourenço TC; Costa LT; Zhang Y; Maginn EJ; Gurkan B J Phys Chem B; 2019 Jan; 123(2):516-527. PubMed ID: 30543427 [TBL] [Abstract][Full Text] [Related]
11. Pyrrolidinium-based ionic liquids doped with lithium salts: how does Li(+) coordination affect its diffusivity? Castiglione F; Famulari A; Raos G; Meille SV; Mele A; Appetecchi GB; Passerini S J Phys Chem B; 2014 Nov; 118(47):13679-88. PubMed ID: 25368963 [TBL] [Abstract][Full Text] [Related]
12. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: a molecular dynamics study. Liu H; Maginn E J Chem Phys; 2013 Sep; 139(11):114508. PubMed ID: 24070298 [TBL] [Abstract][Full Text] [Related]
13. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids. Borodin O; Smith GD; Henderson W J Phys Chem B; 2006 Aug; 110(34):16879-86. PubMed ID: 16927976 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids. Gómez-González V; Docampo-Álvarez B; Cabeza O; Fedorov M; Lynden-Bell RM; Gallego LJ; Varela LM J Chem Phys; 2015 Sep; 143(12):124507. PubMed ID: 26429024 [TBL] [Abstract][Full Text] [Related]
15. Structure and Conformational Response of Pure and Lithium-Doped Ionic Liquids to Pressure Alterations from Molecular Dynamics Simulations. Reddy TDN; Mallik BS J Phys Chem B; 2020 Mar; 124(12):2436-2449. PubMed ID: 32125850 [TBL] [Abstract][Full Text] [Related]
17. The Effect of Concentration of Lithium Salt on the Structural and Transport Properties of Ionic Liquid-Based Electrolytes. Tong J; Wu S; von Solms N; Liang X; Huo F; Zhou Q; He H; Zhang S Front Chem; 2019; 7():945. PubMed ID: 32117860 [TBL] [Abstract][Full Text] [Related]
18. Effect of Lithium-Ion on the Structural Organization of Monocationic and Dicationic Ionic Liquids. Chakraborty M; Barik S; Mahapatra A; Sarkar M J Phys Chem B; 2021 Dec; 125(47):13015-13026. PubMed ID: 34788041 [TBL] [Abstract][Full Text] [Related]
19. MD simulations of the formation of stable clusters in mixtures of alkaline salts and imidazolium-based ionic liquids. Méndez-Morales T; Carrete J; Bouzón-Capelo S; Pérez-Rodríguez M; Cabeza Ó; Gallego LJ; Varela LM J Phys Chem B; 2013 Mar; 117(11):3207-20. PubMed ID: 23480174 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical properties of three ionic liquids containing a tetracyanoborate anion and their lithium salt mixtures. Sanchez-Ramirez N; Martins VL; Ando RA; Camilo FF; Urahata SM; Ribeiro MC; Torresi RM J Phys Chem B; 2014 Jul; 118(29):8772-81. PubMed ID: 24992482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]