These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30362804)

  • 1. Nanosecond Freezing of Water at High Pressures: Nucleation and Growth near the Metastability Limit.
    Myint PC; Chernov AA; Sadigh B; Benedict LX; Hall BM; Hamel S; Belof JL
    Phys Rev Lett; 2018 Oct; 121(15):155701. PubMed ID: 30362804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements.
    Dolan DH; Gupta YM
    J Chem Phys; 2004 Nov; 121(18):9050-7. PubMed ID: 15527371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metastability of Liquid Water Freezing into Ice VII under Dynamic Compression.
    Marshall MC; Millot M; Fratanduono DE; Sterbentz DM; Myint PC; Belof JL; Kim YJ; Coppari F; Ali SJ; Eggert JH; Smith RF; McNaney JM
    Phys Rev Lett; 2021 Sep; 127(13):135701. PubMed ID: 34623849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice-Crystal Nucleation in Water: Thermodynamic Driving Force and Surface Tension. Part I: Theoretical Foundation.
    Hellmuth O; Schmelzer JWP; Feistel R
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of solid-cluster evolution applied to the nanosecond solidification of water near the metastable limit.
    Sterbentz DM; Myint PC; Delplanque JP; Belof JL
    J Chem Phys; 2019 Oct; 151(16):164501. PubMed ID: 31675853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compression Freezing Kinetics of Water to Ice VII.
    Gleason AE; Bolme CA; Galtier E; Lee HJ; Granados E; Dolan DH; Seagle CT; Ao T; Ali S; Lazicki A; Swift D; Celliers P; Mao WL
    Phys Rev Lett; 2017 Jul; 119(2):025701. PubMed ID: 28753373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid freezing of water under dynamic compression.
    Myint PC; Belof JL
    J Phys Condens Matter; 2018 Jun; 30(23):233002. PubMed ID: 29766905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into water freezing from classical nucleation theory.
    Huang X; Sun Y; Tan X; Zhang C; Huang Y; Liao W; Liu F
    Phys Chem Chem Phys; 2023 Apr; 25(14):10129-10135. PubMed ID: 36974883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.
    Deshmukh S; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2014 Jun; 15(8):1632-42. PubMed ID: 24715572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of heterogeneous nucleation on intrinsic nucleants in pure fcc transition metals.
    Wilde G; Santhaweesuk C; Sebright JL; Bokeloh J; Perepezko JH
    J Phys Condens Matter; 2009 Nov; 21(46):464113. PubMed ID: 21715877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice Ih vs. ice III along the homogeneous nucleation line.
    Espinosa JR; Diez AL; Vega C; Valeriani C; Ramirez J; Sanz E
    Phys Chem Chem Phys; 2019 Mar; 21(10):5655-5660. PubMed ID: 30793135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.
    Haji-Akbari A; Debenedetti PG
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10582-8. PubMed ID: 26240318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freezing water in no-man's land.
    Manka A; Pathak H; Tanimura S; Wölk J; Strey R; Wyslouzil BE
    Phys Chem Chem Phys; 2012 Apr; 14(13):4505-16. PubMed ID: 22354018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions.
    Koop T; Luo B; Tsias A; Peter T
    Nature; 2000 Aug; 406(6796):611-4. PubMed ID: 10949298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of Ice Nucleation Confined in Nanoporous Alumina.
    Suzuki Y; Steinhart M; Butt HJ; Floudas G
    J Phys Chem B; 2015 Sep; 119(35):11960-6. PubMed ID: 26241561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.