These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 3036283)

  • 21. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors.
    Blaise GA; Stewart DJ; Guérard MJ
    Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of nitric oxide and nitric oxide-independent relaxing factor in contraction and relaxation of rabbit blood vessels.
    Fujimoto S; Itoh T
    Eur J Pharmacol; 1997 Jul; 330(2-3):177-84. PubMed ID: 9253951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antagonists of EDRF attenuate acetylcholine-induced vasodilation in isolated hamster lungs.
    Tseng CM; Mitzner W
    J Appl Physiol (1985); 1992 Jun; 72(6):2162-7. PubMed ID: 1629068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphodiesterase inhibitors induce endothelium-dependent relaxation of rat and rabbit aorta by potentiating the effects of spontaneously released endothelium-derived relaxing factor.
    Martin W; Furchgott RF; Villani GM; Jothianandan D
    J Pharmacol Exp Ther; 1986 May; 237(2):539-47. PubMed ID: 2422344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Captopril reverses the reduced vasodilator response to bradykinin in hypertensive pregnant rats.
    Resende AC; Pimentel AM; de Moura RS
    Clin Exp Pharmacol Physiol; 2004 Nov; 31(11):756-61. PubMed ID: 15566389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of nitric oxide and endothelium-derived hyperpolarizing factor in vasorelaxant effect of acetylcholine as influenced by aging and hypertension.
    Mantelli L; Amerini S; Ledda F
    J Cardiovasc Pharmacol; 1995 Apr; 25(4):595-602. PubMed ID: 7596128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of nitric oxide, cyclic GMP and K+ channels to acetylcholine-induced dilatation of rat conduit and resistance arteries.
    Woodman OL; Wongsawatkul O; Sobey CG
    Clin Exp Pharmacol Physiol; 2000; 27(1-2):34-40. PubMed ID: 10696526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of cross-linked hemoglobin on regional vascular conductance in dogs.
    Dietz NM; Martin CM; Beltran-del-Rio AG; Joyner MJ
    Anesth Analg; 1997 Aug; 85(2):265-73. PubMed ID: 9249098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endothelium-derived relaxing factor is likely to modulate the tone of resistance arteries in rabbit hindlimb in vivo.
    Förstermann U; Dudel C; Frölich JC
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1055-61. PubMed ID: 2447263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of exercise training on the vascular reactivity of the whole kidney circulation in rabbits.
    De Moraes R; Gioseffi G; Nóbrega AC; Tibiriçá E
    J Appl Physiol (1985); 2004 Aug; 97(2):683-8. PubMed ID: 15090484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurokinins produce selective venoconstriction via NK-3 receptors in the rat mesenteric vascular bed.
    D'Orléans-Juste P; Claing A; Télémaque S; Warner TD; Regoli D
    Eur J Pharmacol; 1991 Nov; 204(3):329-34. PubMed ID: 1723050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acetylcholine-induced vasodilatation in rabbit hindlimb in vivo is not inhibited by analogues of L-arginine.
    Mügge A; Lopez JA; Piegors DJ; Breese KR; Heistad DD
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H242-7. PubMed ID: 1704195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties and mechanisms of production and action of endothelium-derived relaxing factor.
    Förstermann U
    J Cardiovasc Pharmacol; 1986; 8 Suppl 10():S45-51. PubMed ID: 2438490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EDRF and the regulation of vascular tone.
    Griffith TM; Henderson AH
    Int J Microcirc Clin Exp; 1989 Nov; 8(4):383-96. PubMed ID: 2691416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endothelium-derived relaxing factor-mediated vasodilation in mouse mesenteric vascular beds.
    Fujiwara H; Wake Y; Hashikawa-Hobara N; Makino K; Takatori S; Zamami Y; Kitamura Y; Kawasaki H
    J Pharmacol Sci; 2012; 118(3):373-81. PubMed ID: 22450195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NG-nitro-L-arginine antagonizes endothelium-dependent dilator responses by inhibiting endothelium-derived relaxing factor release in the isolated rabbit heart.
    Lamontagne D; Pohl U; Busse R
    Pflugers Arch; 1991 Apr; 418(3):266-70. PubMed ID: 1649992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclic GMP release and vasodilatation induced by EDRF and atrial natriuretic factor in the isolated perfused kidney of the rat.
    Burton GA; MacNeil S; de Jonge A; Haylor J
    Br J Pharmacol; 1990 Feb; 99(2):364-8. PubMed ID: 2158376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct biochemical evidence for eNOS stimulation by bradykinin in the human forearm vasculature.
    Lauer T; Kleinbongard P; Preik M; Rauch BH; Deussen A; Feelisch M; Strauer BE; Kelm M
    Basic Res Cardiol; 2003 Mar; 98(2):84-9. PubMed ID: 12607129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contraction and endothelium-dependent relaxation in mesenteric microvessels from pregnant rats.
    Pascoal IF; Lindheimer MD; Nalbantian-Brandt C; Umans JG
    Am J Physiol; 1995 Dec; 269(6 Pt 2):H1899-904. PubMed ID: 8594897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies of the role of endothelium-dependent nitric oxide release in the sustained vasodilator effects of corticotrophin releasing factor and sauvagine.
    Barker DM; Corder R
    Br J Pharmacol; 1999 Jan; 126(1):317-25. PubMed ID: 10051151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.