These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30363144)

  • 1. An improved PADDY model including uptake by rice roots to predict pesticide behavior in paddy fields under nursery-box and submerged applications.
    Inao K; Iwafune T; Horio T
    J Pestic Sci; 2018 May; 43(2):142-152. PubMed ID: 30363144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of isoprothiolane and fipronil in paddy water, soil, and rice plants after nursery-box or submerged applications.
    Inao K; Iwafune T; Horio T; Kitayama I
    J Pestic Sci; 2018 May; 43(2):132-141. PubMed ID: 30363141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of lysimeter experiments for simulating pesticide dissipation in paddy fields. Part 2: Nursery-box application and foliar application.
    Kondo K; Wakasone Y; Okuno J; Nakamura N; Muraoka T; Iijima K; Ohyama K
    J Pestic Sci; 2019 Feb; 44(1):61-70. PubMed ID: 30820174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the fate and transport of nursery-box-applied pesticide in rice paddy fields.
    Boulange J; Thuyet DQ; Jaikaew P; Watanabe H
    Pest Manag Sci; 2016 Jun; 72(6):1178-86. PubMed ID: 26271744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field.
    Boulange J; Malhat F; Thuyet DQ; Watanabe H
    Pest Manag Sci; 2017 Dec; 73(12):2429-2438. PubMed ID: 28580617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting rice pesticide fate and transport following foliage application by an updated PCPF-1 model.
    Tu LH; Boulange J; Phong TK; Thuyet DQ; Watanabe H; Takagi K
    J Environ Manage; 2021 Jan; 277():111356. PubMed ID: 32950777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved PADDY-Large model including lateral seepage loss from paddy fields to predict pesticide behavior in river basins.
    Inao K; Iwasaki N; Kitayama I; Horio T
    J Pestic Sci; 2016 May; 41(2):59-63. PubMed ID: 30363133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach: Beauveria bassiana granules applied to nursery soil for management of rice water weevils in paddy fields.
    Kim JS; Lee SJ; Skinner M; Parker BL
    Pest Manag Sci; 2014 Aug; 70(8):1186-91. PubMed ID: 24771507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model.
    Watanabe H; Takagi K; Vu SH
    Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a management-oriented simulation model of pesticide emissions for use in the life cycle assessment of paddy rice cultivation.
    Tang L; Hayashi K; Inao K; Birkved M; Bruun S; Kohyama K; Shimura M
    Sci Total Environ; 2020 May; 716():137034. PubMed ID: 32036139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance evaluation of lysimeter experiments for simulating pesticide dissipation in paddy fields. Part 1: Submerged application of granular pesticides.
    Kondo K; Wakasone Y; Okuno J; Nakamura N; Muraoka T; Iijima K; Ohyama K
    J Pestic Sci; 2019 Feb; 44(1):48-60. PubMed ID: 30820173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating concentration of bensulphuron-methyl in a drainage canal of a paddy block using a rice pesticide model.
    Phong TK; Hiramatsu K; Watanabe H
    Environ Technol; 2011 Jan; 32(1-2):69-81. PubMed ID: 21473270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating pesticide leaching and runoff in rice paddies with the RICEWQ-VADOFT model.
    Miao Z; Cheplick MJ; Williams MW; Trevisan M; Padovani L; Gennari M; Ferrero A; Vidotto F; Capri E
    J Environ Qual; 2003; 32(6):2189-99. PubMed ID: 14674541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simulation model (PostPLANT-Soil) for predicting pesticide concentrations in succeeding leafy vegetables: I. Validation with experimental data in a Japanese Andosol field.
    Inao K; Namiki S; Motoki Y; Seike N; Watanabe E
    J Pestic Sci; 2023 Nov; 48(4):117-127. PubMed ID: 38090222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic modeling of pesticide uptake with a 3D plant architecture model.
    Jorda H; Huber K; Kunkel A; Vanderborght J; Javaux M; Oberdörster C; Hammel K; Schnepf A
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):55678-55689. PubMed ID: 34142318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the fate of pesticides in paddy rice-fish pond farming systems in northern Vietnam.
    La N; Lamers M; Nguyen VV; Streck T
    Pest Manag Sci; 2014 Jan; 70(1):70-9. PubMed ID: 23483671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of theoretical and experimental values for plant uptake of pesticide from soil.
    Hwang JI; Lee SE; Kim JE
    PLoS One; 2017; 12(2):e0172254. PubMed ID: 28212386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.