These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30363716)

  • 1. Dissipative Coupling of Fluid and Immersed Objects for Modelling of Cells in Flow.
    Bušík M; Slavík M; Cimrák I
    Comput Math Methods Med; 2018; 2018():7842857. PubMed ID: 30363716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
    Zhang J; Johnson PC; Popel AS
    J Biomech; 2008; 41(1):47-55. PubMed ID: 17888442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects.
    Xiong W; Zhang J
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):575-83. PubMed ID: 21744014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation of a Capsule in a Power-Law Shear Flow.
    Tian FB
    Comput Math Methods Med; 2016; 2016():7981386. PubMed ID: 27840656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: boundary conditions.
    Haber S; Filipovic N; Kojic M; Tsuda A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046701. PubMed ID: 17155206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape oscillations of elastic particles in shear flow.
    Subramaniam DR; Gee DJ
    J Mech Behav Biomed Mater; 2016 Sep; 62():534-544. PubMed ID: 27294284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ; Kalluri RM; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
    Mauer J; Mendez S; Lanotte L; Nicoud F; Abkarian M; Gompper G; Fedosov DA
    Phys Rev Lett; 2018 Sep; 121(11):118103. PubMed ID: 30265089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interaction between two nonspherical capsules in shear flow.
    Le DV; Chiam KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056322. PubMed ID: 22181513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between induced fluid structure and boundary slip in nanoscale polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051603. PubMed ID: 21230484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of numerical methods for red blood cell flow simulation.
    Ju M; Ye SS; Namgung B; Cho S; Low HT; Leo HL; Kim S
    Comput Methods Biomech Biomed Engin; 2015; 18(2):130-40. PubMed ID: 23582050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An energy-rate based blood viscosity model incorporating aggregate network dynamics.
    Kaliviotis E; Yianneskis M
    Biorheology; 2009; 46(6):487-508. PubMed ID: 20164632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
    Kolahdouz EM; Bhalla APS; Scotten LN; Craven BA; Griffith BE
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34149063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.