These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30364047)

  • 1. Passive Reflectance Sensing and Digital Image Analysis Allows for Assessing the Biomass and Nitrogen Status of Wheat in Early and Late Tillering Stages.
    Elsayed S; Barmeier G; Schmidhalter U
    Front Plant Sci; 2018; 9():1478. PubMed ID: 30364047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum: Passive Reflectance Sensing and Digital Image Analysis Allows for Assessing the Biomass and Nitrogen Status of Wheat in Early and Late Tillering Stages.
    Elsayed S; Barmeier G; Schmidhalter U
    Front Plant Sci; 2021; 12():670027. PubMed ID: 33959144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating RGB Imaging and Multispectral Active and Hyperspectral Passive Sensing for Assessing Early Plant Vigor in Winter Wheat.
    Prey L; von Bloh M; Schmidhalter U
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Performance of Spectral Reflectance Indices and Multivariate Modeling for Assessing Agronomic Parameters in Advanced Spring Wheat Lines Under Two Contrasting Irrigation Regimes.
    El-Hendawy SE; Alotaibi M; Al-Suhaibani N; Al-Gaadi K; Hassan W; Dewir YH; Emam MAE; Elsayed S; Schmidhalter U
    Front Plant Sci; 2019; 10():1537. PubMed ID: 31850029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of Vegetation Indices for Estimating Vegetative N Status in Winter Wheat.
    Prey L; Schmidhalter U
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31461857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response.
    Banerjee BP; Joshi S; Thoday-Kennedy E; Pasam RK; Tibbits J; Hayden M; Spangenberg G; Kant S
    J Exp Bot; 2020 Jul; 71(15):4604-4615. PubMed ID: 32185382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of Nitrogen Concentration in Soybean Leaves at Multiple Spatial Vertical Scales Based on Spectral Parameters.
    Sun T; Li Z; Wang Z; Liu Y; Zhu Z; Zhao Y; Xie W; Cui S; Chen G; Yang W; Zhang Z; Zhang F
    Plants (Basel); 2024 Jan; 13(1):. PubMed ID: 38202447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data.
    Zhou K; Cheng T; Zhu Y; Cao W; Ustin SL; Zheng H; Yao X; Tian Y
    Front Plant Sci; 2018; 9():964. PubMed ID: 30026750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Field Phenotyping Traits of Grain Yield Formation and Nitrogen Use Efficiency: Optimizing the Selection of Vegetation Indices and Growth Stages.
    Prey L; Hu Y; Schmidhalter U
    Front Plant Sci; 2019; 10():1672. PubMed ID: 32010159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Field Phenotyping of Leaves, Leaf Sheaths, Culms and Ears of Spring Barley Cultivars at Anthesis and Dough Ripeness.
    Barmeier G; Schmidhalter U
    Front Plant Sci; 2017; 8():1920. PubMed ID: 29163629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity.
    Meacham-Hensold K; Montes CM; Wu J; Guan K; Fu P; Ainsworth EA; Pederson T; Moore CE; Brown KL; Raines C; Bernacchi CJ
    Remote Sens Environ; 2019 Sep; 231():111176. PubMed ID: 31534277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing estimation of cover crop biomass using field-based high-throughput phenotyping and machine learning models.
    Bai G; Koehler-Cole K; Scoby D; Thapa VR; Basche A; Ge Y
    Front Plant Sci; 2023; 14():1277672. PubMed ID: 38259938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminating growth stages of an endangered Mediterranean relict plant (Ammopiptanthus mongolicus) in the arid Northwest China using hyperspectral measurements.
    Li R; Yan C; Zhao Y; Wang P; Qiu GY
    Sci Total Environ; 2019 Mar; 657():270-278. PubMed ID: 30543976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages.
    Zheng Q; Huang W; Cui X; Dong Y; Shi Y; Ma H; Liu L
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing.
    Barmeier G; Schmidhalter U
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study of Nitrogen Deficiency Inversion in Rice Leaves Based on the Hyperspectral Reflectance Differential.
    Yu F; Feng S; Du W; Wang D; Guo Z; Xing S; Jin Z; Cao Y; Xu T
    Front Plant Sci; 2020; 11():573272. PubMed ID: 33343590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions.
    El-Hendawy S; Al-Suhaibani N; Elsayed S; Alotaibi M; Hassan W; Schmidhalter U
    Plant Physiol Biochem; 2019 Nov; 144():300-311. PubMed ID: 31605962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Nitrogen content inversion of wheat canopy leaf based on ground spectral reflectance data].
    Song X; Xu DY; Huang SM; Huang CC; Zhang SQ; Guo DD; Zhang KK; Yue K
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1636-1644. PubMed ID: 32530242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The inversion of nitrogen balance index in typical growth period of soybean based on high definition digital image and hyperspectral data on unmanned aerial vehicles].
    Li CC; Chen P; Lu GZ; Ma CY; Ma XX; Wang ST
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1225-1232. PubMed ID: 29726232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Nitrogen status diagnosis and yield prediction of spring maize after green manure incorporation by using a digital camera].
    Bai JS; Cao WD; Xiong J; Zeng NH; Shimizu K; Rui YK
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Dec; 33(12):3334-8. PubMed ID: 24611398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.