These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30364172)

  • 1. Glycolysis Paradigm Shift Dictates a Reevaluation of Glucose and Oxygen Metabolic Rates of Activated Neural Tissue.
    Schurr A
    Front Neurosci; 2018; 12():700. PubMed ID: 30364172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic Glycolysis: A DeOxymoron of (Neuro)Biology.
    Schurr A; Passarella S
    Metabolites; 2022 Jan; 12(1):. PubMed ID: 35050194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.
    Dienel GA; Cruz NF
    J Neurochem; 2016 Jul; 138(1):14-52. PubMed ID: 27166428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trajectories of Brain Lactate and Re-visited Oxygen-Glucose Index Calculations Do Not Support Elevated Non-oxidative Metabolism of Glucose Across Childhood.
    Benveniste H; Dienel G; Jacob Z; Lee H; Makaryus R; Gjedde A; Hyder F; Rothman DL
    Front Neurosci; 2018; 12():631. PubMed ID: 30254563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism?
    Cohen JJ
    Am J Physiol; 1979 May; 236(5):F423-33. PubMed ID: 220881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue.
    Madsen PL; Cruz NF; Sokoloff L; Dienel GA
    J Cereb Blood Flow Metab; 1999 Apr; 19(4):393-400. PubMed ID: 10197509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement of glycolytic substrate for metabolic recovery during moderate low flow ischemia.
    Schaefer S; Prussel E; Carr LJ
    J Mol Cell Cardiol; 1995 Oct; 27(10):2167-76. PubMed ID: 8576933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic NMR studies of perfusion and oxidative metabolism during focal brain activation.
    Frahm J; Krueger G; Merboldt KD; Kleinschmidt A
    Adv Exp Med Biol; 1997; 413():195-203. PubMed ID: 9238500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the metabolism of the filarial worm, Litomosoides carinii.
    BUEDING E
    J Exp Med; 1949 Jan; 89(1):107-30. PubMed ID: 18099168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate.
    Hertz L; Chen Y
    Front Integr Neurosci; 2017; 11():18. PubMed ID: 28890689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic glycolysis is crucial for the maintenance of neural activity in guinea pig hippocampal slices.
    Yamane K; Yokono K; Okada Y
    J Neurosci Methods; 2000 Nov; 103(2):163-71. PubMed ID: 11084209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term modulation of glycogen metabolism, glycolysis and gluconeogenesis by physiological oxygen concentrations in hepatocyte cultures.
    Wölfle D; Schmidt H; Jungermann K
    Eur J Biochem; 1983 Oct; 135(3):405-12. PubMed ID: 6413204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.
    Dienel GA
    J Neurosci Res; 2017 Nov; 95(11):2103-2125. PubMed ID: 28151548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Updates to a
    Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA
    Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Autoregulatory shift from fructolysis to lactate gluconeogenisis in rat hepatocyte suspensions. The problem of metabolic zonation of liver parenchyma].
    Katz N; Jungermann K
    Hoppe Seylers Z Physiol Chem; 1976 Mar; 357(3):359-75. PubMed ID: 955564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
    Magistretti PJ; Pellerin L
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcription factor Foxp1 regulates aerobic glycolysis in adipocytes and myocytes.
    Ma H; Sukonina V; Zhang W; Meng F; Subhash S; Palmgren H; Alexandersson I; Han H; Zhou S; Bartesaghi S; Kanduri C; Enerbäck S
    J Biol Chem; 2023 Jun; 299(6):104795. PubMed ID: 37150320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress.
    Schurr A; Gozal E
    Front Pharmacol; 2011; 2():96. PubMed ID: 22275901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations.
    Du ZF; Wales RG
    Reprod Fertil Dev; 1993; 5(4):383-93. PubMed ID: 8153388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux balance analysis during lactate and glucose concomitant consumption in HEK293 cell cultures.
    Martínez-Monge I; Albiol J; Lecina M; Liste-Calleja L; Miret J; Solà C; Cairó JJ
    Biotechnol Bioeng; 2019 Feb; 116(2):388-404. PubMed ID: 30411322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.