These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 30364172)
21. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic? Gstraunthaler G; Seppi T; Pfaller W Cell Physiol Biochem; 1999; 9(3):150-72. PubMed ID: 10494029 [TBL] [Abstract][Full Text] [Related]
22. Interleukin (IL)-1beta increases glucose uptake and induces glycolysis in aerobically cultured rat ovarian cells: evidence that IL-1beta may mediate the gonadotropin-induced midcycle metabolic shift. Ben-Shlomo I; Kol S; Roeder LM; Resnick CE; Hurwitz A; Payne DW; Adashi EY Endocrinology; 1997 Jul; 138(7):2680-8. PubMed ID: 9202204 [TBL] [Abstract][Full Text] [Related]
23. Energy sources in fully aerobic rest-work transitions: a new role for glycolysis. Connett RJ; Gayeski TE; Honig CR Am J Physiol; 1985 Jun; 248(6 Pt 2):H922-9. PubMed ID: 4003569 [TBL] [Abstract][Full Text] [Related]
24. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase. Hiltunen JK; Hassinen IE Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244 [TBL] [Abstract][Full Text] [Related]
25. A microscale mathematical model for metabolic symbiosis: Investigating the effects of metabolic inhibition on ATP turnover in tumors. Phipps C; Molavian H; Kohandel M J Theor Biol; 2015 Feb; 366():103-14. PubMed ID: 25433213 [TBL] [Abstract][Full Text] [Related]
26. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Hertz L; Peng L; Dienel GA J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632 [TBL] [Abstract][Full Text] [Related]
27. Lactic Acidosis in the Presence of Glucose Diminishes Warburg Effect in Lung Adenocarcinoma Cells. Prado-Garcia H; Campa-Higareda A; Romero-Garcia S Front Oncol; 2020; 10():807. PubMed ID: 32596143 [TBL] [Abstract][Full Text] [Related]
28. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells. Sullivan SG; Stern A Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261 [TBL] [Abstract][Full Text] [Related]
29. Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. Dienel GA; Wang RY; Cruz NF J Cereb Blood Flow Metab; 2002 Dec; 22(12):1490-502. PubMed ID: 12468893 [TBL] [Abstract][Full Text] [Related]
30. Lactate: the ultimate cerebral oxidative energy substrate? Schurr A J Cereb Blood Flow Metab; 2006 Jan; 26(1):142-52. PubMed ID: 15973352 [TBL] [Abstract][Full Text] [Related]
31. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695 [TBL] [Abstract][Full Text] [Related]
32. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer. Mondal S; Roy D; Camacho-Pereira J; Khurana A; Chini E; Yang L; Baddour J; Stilles K; Padmabandu S; Leung S; Kalloger S; Gilks B; Lowe V; Dierks T; Hammond E; Dredge K; Nagrath D; Shridhar V Oncotarget; 2015 Oct; 6(32):33705-19. PubMed ID: 26378042 [TBL] [Abstract][Full Text] [Related]
33. Cachectin/TNF-mediated lactate production in cultured myocytes is linked to activation of a futile substrate cycle. Zentella A; Manogue K; Cerami A Cytokine; 1993 Sep; 5(5):436-47. PubMed ID: 8142598 [TBL] [Abstract][Full Text] [Related]
34. Lactate and Pyruvate Are Major Sources of Energy for Stallion Sperm with Dose Effects on Mitochondrial Function, Motility, and ROS Production. Darr CR; Varner DD; Teague S; Cortopassi GA; Datta S; Meyers SA Biol Reprod; 2016 Aug; 95(2):34. PubMed ID: 27335066 [TBL] [Abstract][Full Text] [Related]
35. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Ainscow EK; Brand MD Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130 [TBL] [Abstract][Full Text] [Related]
36. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
37. The vein utilizes different sources of energy than the artery during pulmonary hypoxic vasoconstriction. Zhao Y; Packer CS; Rhoades RA Exp Lung Res; 1996; 22(1):51-63. PubMed ID: 8838135 [TBL] [Abstract][Full Text] [Related]
39. Energy metabolism of cultured TM4 cells and the action of gossypol. Reyes J; Borriero L; Tanphaichitr N; Bellve AR; Benos DJ Biol Reprod; 1986 Jun; 34(5):809-19. PubMed ID: 3730478 [TBL] [Abstract][Full Text] [Related]
40. Chemical versus isotopic equilibrium and the metabolic fate of glycolytic end products in the heart. Damico LA; White LT; Yu X; Lewandowski ED J Mol Cell Cardiol; 1996 May; 28(5):989-99. PubMed ID: 8762037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]