These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30364253)

  • 1. Orderliness of Visual Stimulus Motion Mediates Sensorimotor Coordination.
    Haworth J; Stergiou N
    Front Physiol; 2018; 9():1441. PubMed ID: 30364253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Children's looking preference for biological motion may be related to an affinity for mathematical chaos.
    Haworth JL; Kyvelidou A; Fisher W; Stergiou N
    Front Psychol; 2015; 6():281. PubMed ID: 25852600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging affects postural tracking of complex visual motion cues.
    Sotirakis H; Kyvelidou A; Mademli L; Stergiou N; Hatzitaki V
    Exp Brain Res; 2016 Sep; 234(9):2529-40. PubMed ID: 27126061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postural sway and gaze can track the complex motion of a visual target.
    Hatzitaki V; Stergiou N; Sofianidis G; Kyvelidou A
    PLoS One; 2015; 10(3):e0119828. PubMed ID: 25774508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indifference to Chaotic Motion May Be Related to Social Disinterest in Children With Autism.
    Haworth J; Kyvelidou A; Fisher W; Stergiou N
    J Mot Learn Dev; 2016 Dec; 4(2):219-235. PubMed ID: 28203582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaze and posture coordinate differently with the complexity of visual stimulus motion.
    Haworth JL; Vallabhajosula S; Stergiou N
    Exp Brain Res; 2014 Sep; 232(9):2797-806. PubMed ID: 24792502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posture and gaze tracking of a vertically moving target reveals age-related constraints in visuo-motor coupling.
    Sotirakis H; Kyvelidou A; Stergiou N; Hatzitaki V
    Neurosci Lett; 2017 Jul; 654():12-16. PubMed ID: 28629778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction effects of visual stimulus speed and contrast on postural sway.
    Holten V; van der Smagt MJ; Verstraten FA; Donker SF
    Exp Brain Res; 2016 Jan; 234(1):113-24. PubMed ID: 26378007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion.
    Zivotofsky AZ; Rottach KG; Averbuch-Heller L; Kori AA; Thomas CW; Dell'Osso LF; Leigh RJ
    J Neurophysiol; 1996 Dec; 76(6):3617-32. PubMed ID: 8985862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency dependence of the action-perception cycle for postural control in a moving visual environment: relative phase dynamics.
    Dijkstra TM; Schöner G; Giese MA; Gielen CC
    Biol Cybern; 1994; 71(6):489-501. PubMed ID: 7999875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual contribution to postural stability: Interaction between target fixation or tracking and static or dynamic large-field stimulus.
    Laurens J; Awai L; Bockisch CJ; Hegemann S; van Hedel HJ; Dietz V; Straumann D
    Gait Posture; 2010 Jan; 31(1):37-41. PubMed ID: 19775892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye Movements Affect Postural Control in Young and Older Females.
    Thomas NM; Bampouras TM; Donovan T; Dewhurst S
    Front Aging Neurosci; 2016; 8():216. PubMed ID: 27695412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrally similar periodic and non-periodic optic flows evoke different postural sway responses.
    Musolino MC; Loughlin PJ; Sparto PJ; Redfern MS
    Gait Posture; 2006 Feb; 23(2):180-8. PubMed ID: 16399514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swaying to the complex motion of a visual target affects postural sway variability.
    Sotirakis H; Patikas D; Stergiou N; Hatzitaki V
    Gait Posture; 2020 Mar; 77():125-131. PubMed ID: 32028079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional coupling of the stabilizing gaze reflexes during vertical linear motion in the alert cat.
    Lacour M; Borel L
    Prog Brain Res; 1989; 80():385-94; discussion 373-5. PubMed ID: 2634278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unstable coupling of body sway with imposed motion precedes visually induced motion sickness.
    Walter HJ; Li R; Munafo J; Curry C; Peterson N; Stoffregen TA
    Hum Mov Sci; 2019 Apr; 64():389-397. PubMed ID: 30876760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes.
    Stone LS; Lisberger SG
    J Neurophysiol; 1990 May; 63(5):1262-75. PubMed ID: 2358873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-segmental postural coordination in professional ballet dancers.
    Kiefer AW; Riley MA; Shockley K; Sitton CA; Hewett TE; Cummins-Sebree S; Haas JG
    Gait Posture; 2011 May; 34(1):76-80. PubMed ID: 21530267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkinson's disease does not alter automatic visual-motor coupling in postural control.
    Cruz CF; Piemonte MEP; Okai-Nobrega LA; Okamoto E; Fortaleza ACS; Mancini M; Horak FB; Barela JA
    Neurosci Lett; 2018 Nov; 686():47-52. PubMed ID: 30193795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.