These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30364278)

  • 21. Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag.
    Yan P; Shen Y; Du X; Chong J
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32392790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties.
    Zeng Q; Chen P; Yu Q; Chu HR; Xiong XH; Xu DW; Wang Q
    Sci Rep; 2017 Aug; 7(1):8388. PubMed ID: 28814735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co
    Zeng S; Han S; Sun X; Wang L; Gao Y; Chen Z; Feng H
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of one-dimensional ZnFe
    Liao Z; Ma M; Tong Z; Bi Y; Chung KL; Qiao M; Ma Y; Ma A; Wu G; Li Z; Zhang Y
    J Colloid Interface Sci; 2021 Oct; 600():90-98. PubMed ID: 34004433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construct of CoZnO/CSP biomass-derived carbon composites with broad effective absorption bandwidth of 7.2 GHz and excellent microwave absorption performance.
    Zhao J; Wang H; Chen M; Li Y; Wang Z; Fang C; Liu P
    J Colloid Interface Sci; 2023 Jun; 639():160-170. PubMed ID: 36804789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In-situ growth of core-shell ZnFe
    Chai L; Wang Y; Zhou N; Du Y; Zeng X; Zhou S; He Q; Wu G
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):475-484. PubMed ID: 32805668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional porous manganese oxide/nickel/carbon microspheres as high-performance electromagnetic wave absorbers with superb photothermal property.
    Meng X; Qiao J; Yang Y; Zhang X; Yang Z; Zheng S; Liu J; Wu L; Wang Z; Wang F
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):884-894. PubMed ID: 36150266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NiCo
    Ma M; Li W; Tong Z; Ma Y; Bi Y; Liao Z; Zhou J; Wu G; Li M; Yue J; Song X; Zhang X
    J Colloid Interface Sci; 2020 Oct; 578():58-68. PubMed ID: 32505914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfur vacancy regulation and multipolarization of NixCo1S nanowires-decorated biotemplated structures to promote microwave absorption.
    Wang D; Hu Y; Cui Z; Yang P; Du Z; Hou Y; Yang P; Rao J; Wang C; Zhang Y
    J Colloid Interface Sci; 2023 Sep; 646():991-1001. PubMed ID: 37245268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-Step Solvothermal Synthesis of (Zn
    Yin P; Zhang L; Wu H; Feng X; Wang J; Rao H; Wang Y; Dai J; Tang Y
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31718034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational Construction of Hierarchically Porous Fe-Co/N-Doped Carbon/rGO Composites for Broadband Microwave Absorption.
    Wang S; Xu Y; Fu R; Zhu H; Jiao Q; Feng T; Feng C; Shi D; Li H; Zhao Y
    Nanomicro Lett; 2019 Sep; 11(1):76. PubMed ID: 34138043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of Hollow Porous Carbon Nanofibers and Their Performance and Mechanism of Broadband Microwave Absorption.
    Shao R; Wang F; Yang S; Jin J; Li G
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel Three-Dimensional Graphene-Like Networks Loaded with Fe
    Shang T; Lu Q; Zhao J; Chao L; Qin Y; Ren N; Yun Y; Yun G
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34072587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoporous carbon hollow spheres as a light weight microwave absorbing material showing modulating dielectric loss.
    Chen J; Liang X; Liu W; Gu W; Zhang B; Ji G
    Dalton Trans; 2019 Jul; 48(27):10145-10150. PubMed ID: 31184651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electromagnetic Property and Tunable Microwave Absorption of 3D Nets from Nickel Chains at Elevated Temperature.
    Liu J; Cao MS; Luo Q; Shi HL; Wang WZ; Yuan J
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22615-22. PubMed ID: 27509241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology-Control Synthesis of a Core-Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities.
    Zhao B; Zhao W; Shao G; Fan B; Zhang R
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12951-60. PubMed ID: 26018739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption.
    Guo Z; Ren P; Zhang F; Duan H; Chen Z; Jin Y; Ren F; Li Z
    J Colloid Interface Sci; 2022 Mar; 610():1077-1087. PubMed ID: 34887064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational construction of yolk-shell structured Co
    Zhu H; Liang J; Chen J; Chang H; Jiao X; Jiao Q; Feng C; Li H; Zhang Y; Zhao Y
    J Colloid Interface Sci; 2022 Nov; 626():775-786. PubMed ID: 35820213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption.
    Li W; Guo F; Wei X; Du Y; Chen Y
    RSC Adv; 2020 Oct; 10(60):36644-36653. PubMed ID: 35517929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic graphene enabled tunable microwave absorber via thermal control.
    Quan L; Qin FX; Li YH; Estevez D; Fu GJ; Wang H; Peng HX
    Nanotechnology; 2018 Jun; 29(24):245706. PubMed ID: 29595518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.